|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: DanSumT5-baseV_13284V_36974V_40973 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# DanSumT5-baseV_13284V_36974V_40973 |
|
|
|
This model is a fine-tuned version of [emilstabil/DanSumT5-baseV_13284V_36974](https://huggingface.co/emilstabil/DanSumT5-baseV_13284V_36974) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0844 |
|
- Rouge1: 34.7659 |
|
- Rouge2: 12.0539 |
|
- Rougel: 21.7003 |
|
- Rougelsum: 32.4346 |
|
- Gen Len: 125.7257 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 6 |
|
- eval_batch_size: 6 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 24 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 11 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| |
|
| No log | 1.0 | 79 | 2.0942 | 34.8616 | 12.1787 | 21.938 | 32.7257 | 125.2743 | |
|
| No log | 1.99 | 158 | 2.0948 | 35.2673 | 12.4538 | 22.1361 | 33.0224 | 125.4852 | |
|
| No log | 2.99 | 237 | 2.0952 | 34.9658 | 12.3838 | 21.8458 | 32.7172 | 125.4684 | |
|
| No log | 4.0 | 317 | 2.0912 | 35.0599 | 12.2917 | 22.056 | 32.8679 | 125.789 | |
|
| No log | 5.0 | 396 | 2.0928 | 34.8244 | 12.177 | 21.7107 | 32.5448 | 125.7342 | |
|
| No log | 5.99 | 475 | 2.0921 | 34.9628 | 12.0905 | 21.9328 | 32.6944 | 125.7384 | |
|
| 1.9703 | 6.99 | 554 | 2.0894 | 35.2438 | 12.2584 | 22.0919 | 32.8896 | 125.6118 | |
|
| 1.9703 | 8.0 | 634 | 2.0880 | 35.0228 | 12.0681 | 21.9121 | 32.6604 | 125.7848 | |
|
| 1.9703 | 9.0 | 713 | 2.0864 | 34.9607 | 12.0556 | 21.8096 | 32.5884 | 125.6751 | |
|
| 1.9703 | 9.99 | 792 | 2.0849 | 34.7755 | 12.0721 | 21.7294 | 32.4555 | 125.7215 | |
|
| 1.9703 | 10.97 | 869 | 2.0844 | 34.7659 | 12.0539 | 21.7003 | 32.4346 | 125.7257 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 1.12.1+git7548e2f |
|
- Datasets 2.13.2 |
|
- Tokenizers 0.13.3 |
|
|