_____    ______   __    __   ______   _____    ______   __  __   __    __
/\  __-. /\  __ \ /\ "-./  \ /\  ___\ /\  __-. /\  ___\ /\ \/\ \ /\ "-./  \
\ \ \/\ \\ \  __ \\ \ \-./\ \\ \  __\ \ \ \/\ \\ \___  \\ \ \_\ \\ \ \-./\ \
 \ \____- \ \_\ \_\\ \_\ \ \_\\ \_____\\ \____- \/\_____\\ \_____\\ \_\ \ \_\
  \/____/  \/_/\/_/ \/_/  \/_/ \/_____/ \/____/  \/_____/ \/_____/ \/_/  \/_/
                                                                                                                                                         

Model description

This repository contains a model for Danish abstractive summarisation of medical text.

This model is a fine-tuned version of mt5-large on a danish medical text dataset.

The model was trained on LUMI using 1 AMD MI250X GPU.

Authors

Nicolaj Larsen,
Mikkel Kildeberg &
Emil Schledermann

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.12.1+git7548e2f
  • Datasets 2.13.2
  • Tokenizers 0.13.3
Downloads last month
31
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.