File size: 1,152 Bytes
a174d0f 64d1d2f a174d0f a5b0e42 df33d0e a174d0f a5b0e42 3e4460e 86d03e6 5bf7129 a174d0f df33d0e a174d0f 82736af a174d0f 64d1d2f 86d03e6 64d1d2f a174d0f a5b0e42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: DaMedSumT5-large
results: []
pipeline_tag: summarization
language:
- da
---
```
_____ ______ __ __ ______ _____ ______ __ __ __ __
/\ __-. /\ __ \ /\ "-./ \ /\ ___\ /\ __-. /\ ___\ /\ \/\ \ /\ "-./ \
\ \ \/\ \\ \ __ \\ \ \-./\ \\ \ __\ \ \ \/\ \\ \___ \\ \ \_\ \\ \ \-./\ \
\ \____- \ \_\ \_\\ \_\ \ \_\\ \_____\\ \____- \/\_____\\ \_____\\ \_\ \ \_\
\/____/ \/_/\/_/ \/_/ \/_/ \/_____/ \/____/ \/_____/ \/_____/ \/_/ \/_/
```
## Model description
This repository contains a model for Danish abstractive summarisation of medical text.
This model is a fine-tuned version of mt5-large on a danish medical text dataset.
The model was trained on LUMI using 1 AMD MI250X GPU.
## Authors
Nicolaj Larsen,
Mikkel Kildeberg &
Emil Schledermann
### Framework versions
- Transformers 4.30.2
- Pytorch 1.12.1+git7548e2f
- Datasets 2.13.2
- Tokenizers 0.13.3 |