File size: 1,152 Bytes
a174d0f
 
 
 
 
 
 
64d1d2f
a174d0f
a5b0e42
df33d0e
 
a174d0f
 
a5b0e42
3e4460e
 
 
86d03e6
 
 
5bf7129
a174d0f
 
 
df33d0e
 
 
a174d0f
82736af
a174d0f
64d1d2f
86d03e6
 
64d1d2f
a174d0f
 
 
 
 
a5b0e42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: DaMedSumT5-large
  results: []
pipeline_tag: summarization
language:
- da
---

```
 _____    ______   __    __   ______   _____    ______   __  __   __    __
/\  __-. /\  __ \ /\ "-./  \ /\  ___\ /\  __-. /\  ___\ /\ \/\ \ /\ "-./  \
\ \ \/\ \\ \  __ \\ \ \-./\ \\ \  __\ \ \ \/\ \\ \___  \\ \ \_\ \\ \ \-./\ \
 \ \____- \ \_\ \_\\ \_\ \ \_\\ \_____\\ \____- \/\_____\\ \_____\\ \_\ \ \_\
  \/____/  \/_/\/_/ \/_/  \/_/ \/_____/ \/____/  \/_____/ \/_____/ \/_/  \/_/
                                                                                                                                                         
```

## Model description

This repository contains a model for Danish abstractive summarisation of medical text. 

This model is a fine-tuned version of mt5-large on a danish medical text dataset.

The model was trained on LUMI using 1 AMD MI250X GPU. 

## Authors
Nicolaj Larsen,    
Mikkel Kildeberg &    
Emil Schledermann

### Framework versions
- Transformers 4.30.2
- Pytorch 1.12.1+git7548e2f
- Datasets 2.13.2
- Tokenizers 0.13.3