meg51's picture
End of training
5249667 verified
metadata
base_model: openai/whisper-large-v3
datasets:
  - google/fleurs
language:
  - hi
library_name: peft
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: Whisper Large-v3 Hindi -megha sharma
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: google/fleurs
          config: hi_in
          split: None
          args: 'config: hi, split: test'
        metrics:
          - type: wer
            value: 18.4303006638032
            name: Wer

Whisper Large-v3 Hindi -megha sharma

This model is a fine-tuned version of openai/whisper-large-v3 on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1607
  • Wer: 18.4303

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1781 6.7797 2000 0.1785 21.1734
0.1519 13.5593 4000 0.1621 19.2405
0.1286 20.3390 6000 0.1577 18.7427
0.1259 27.1186 8000 0.1564 18.2058
0.111 33.8983 10000 0.1568 17.9032
0.1067 40.6780 12000 0.1582 17.8153
0.1034 47.4576 14000 0.1591 18.8403
0.0995 54.2373 16000 0.1603 18.8598
0.0929 61.0169 18000 0.1607 18.4303

Framework versions

  • PEFT 0.12.1.dev0
  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1