|
--- |
|
language: ar |
|
license: apache-2.0 |
|
datasets: |
|
- AQMAR |
|
- ANERcorp |
|
thumbnail: https://raw.githubusercontent.com/JetRunner/BERT-of-Theseus/master/bert-of-theseus.png |
|
embeddings: |
|
- GloVe |
|
- Flair |
|
tags: |
|
- Text Classification |
|
metrics: |
|
- f1 |
|
--- |
|
# Arabic NER Model using Flair Embeddings |
|
Training was conducted over 94 epochs, using a linear decaying learning rate of 2e-05, starting from 0.225 and a batch size of 32 with GloVe and Flair forward and backward embeddings. |
|
|
|
Results: |
|
- F1-score (micro) 0.8666 |
|
- F1-score (macro) 0.8488 |
|
|
|
| | tp | fp | fn | precision | recall | class-F1 | |
|
|------|-----|----|----|-----------|--------|----------| |
|
| LOC | 539 | 51 | 68 | 0.9136 | 0.8880 | 0.9006 | |
|
| MISC | 408 | 57 | 89 | 0.8774 | 0.8209 | 0.8482 | |
|
| ORG | 167 | 43 | 64 | 0.7952 | 0.7229 | 0.7574 | |
|
| PER | 501 | 65 | 60 | 0.8852 | 0.8930 | 0.8891 | |
|
|
|
--- |
|
|
|
``` |
|
2020-10-27 12:05:47,801 Model: "SequenceTagger( |
|
(embeddings): StackedEmbeddings( |
|
(list_embedding_0): WordEmbeddings('glove') |
|
(list_embedding_1): FlairEmbeddings( |
|
(lm): LanguageModel( |
|
(drop): Dropout(p=0.1, inplace=False) |
|
(encoder): Embedding(7125, 100) |
|
(rnn): LSTM(100, 2048) |
|
(decoder): Linear(in_features=2048, out_features=7125, bias=True) |
|
) |
|
) |
|
(list_embedding_2): FlairEmbeddings( |
|
(lm): LanguageModel( |
|
(drop): Dropout(p=0.1, inplace=False) |
|
(encoder): Embedding(7125, 100) |
|
(rnn): LSTM(100, 2048) |
|
(decoder): Linear(in_features=2048, out_features=7125, bias=True) |
|
) |
|
) |
|
) |
|
(word_dropout): WordDropout(p=0.05) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(embedding2nn): Linear(in_features=4196, out_features=4196, bias=True) |
|
(rnn): LSTM(4196, 256, batch_first=True, bidirectional=True) |
|
(linear): Linear(in_features=512, out_features=15, bias=True) |
|
(beta): 1.0 |
|
(weights): None |
|
(weight_tensor) None |
|
|
|
``` |