opus-mt-en-ar-evaluated-en-to-ar-2000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ar on the un_multi dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1873
  • Bleu: 53.0137
  • Meteor: 0.5005
  • Gen Len: 25.845

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 11

Training results

Training Loss Epoch Step Validation Loss Bleu Meteor Gen Len
0.6585 0.5 100 0.2085 52.5874 0.4969 25.485
0.1802 1.0 200 0.1788 52.9434 0.4982 25.1725
0.1501 1.5 300 0.1683 53.6994 0.5033 25.625
0.1454 2.0 400 0.1706 53.3946 0.5005 25.6675
0.1193 2.5 500 0.1774 53.2011 0.4982 25.58
0.1194 3.0 600 0.1741 53.8651 0.5026 25.5775
0.1002 3.5 700 0.1878 53.1332 0.5005 25.8975
0.0979 4.0 800 0.1881 52.5989 0.4974 25.485
0.0807 4.5 900 0.1873 53.0137 0.5005 25.845

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train meghazisofiane/opus-mt-en-ar-evaluated-en-to-ar-2000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1

Evaluation results