|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- opus100 |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: opus-mt-en-ar-evaluated-en-to-ar-4000instances-opus-leaningRate2e-05-batchSize8-11-action-1 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: opus100 |
|
type: opus100 |
|
args: ar-en |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 26.8232 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# opus-mt-en-ar-evaluated-en-to-ar-4000instances-opus-leaningRate2e-05-batchSize8-11-action-1 |
|
|
|
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the opus100 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1717 |
|
- Bleu: 26.8232 |
|
- Meteor: 0.172 |
|
- Gen Len: 12.1288 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 11 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| |
|
| 0.7364 | 0.25 | 100 | 0.1731 | 27.2753 | 0.1729 | 12.0887 | |
|
| 0.2175 | 0.5 | 200 | 0.1731 | 27.2055 | 0.1722 | 11.5675 | |
|
| 0.2193 | 0.75 | 300 | 0.1722 | 27.3277 | 0.1798 | 12.1325 | |
|
| 0.2321 | 1.0 | 400 | 0.1750 | 27.5152 | 0.1762 | 11.925 | |
|
| 0.1915 | 1.25 | 500 | 0.1690 | 27.5043 | 0.1751 | 11.9038 | |
|
| 0.1794 | 1.5 | 600 | 0.1719 | 26.8607 | 0.1713 | 11.8138 | |
|
| 0.1741 | 1.75 | 700 | 0.1725 | 26.974 | 0.1724 | 11.8462 | |
|
| 0.1732 | 2.0 | 800 | 0.1717 | 26.8232 | 0.172 | 12.1288 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|