MaLLaM πŸŒ™ 1.1B (Malaysia Large Language Model), Pretrain 1.1B 4096 context length on Malaysian text

Pretrain from scratch 1.1B parameters using Mistral architecture on 90B Malaysian text tokens.

README at https://github.com/mesolitica/malaya/tree/5.1/pretrained-model/mistral

WandB, https://wandb.ai/mesolitica/pretrain-mistral-1.1b?workspace=user-husein-mesolitica

WandB report, https://wandb.ai/mesolitica/pretrain-mistral-3b/reports/Pretrain-Larger-Malaysian-Mistral--Vmlldzo2MDkyOTgz

Technical report, https://github.com/mesolitica/malaya/wiki/MaLLaM-%F0%9F%8C%99-Malaysia-Large-Language-Model

how-to

from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch

TORCH_DTYPE = 'bfloat16'
nf4_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type='nf4',
    bnb_4bit_use_double_quant=True,
    bnb_4bit_compute_dtype=getattr(torch, TORCH_DTYPE)
)

tokenizer = AutoTokenizer.from_pretrained('mesolitica/mallam-1.1B-4096')
model = AutoModelForCausalLM.from_pretrained(
    'mesolitica/mallam-1.1B-4096',
    use_flash_attention_2 = True,
    quantization_config = nf4_config
)
prompt = '<s>nama saya'
inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda')

generate_kwargs = dict(
    inputs,
    max_new_tokens=512,
    top_p=0.95,
    top_k=50,
    temperature=0.9,
    do_sample=True,
    num_beams=1,
    repetition_penalty=1.05,
)
r = model.generate(**generate_kwargs)
Downloads last month
404
Safetensors
Model size
1.12B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using mesolitica/mallam-1.1B-4096 1

Collection including mesolitica/mallam-1.1B-4096