|
--- |
|
language: ms |
|
--- |
|
|
|
# t5-small-standard-bahasa-cased |
|
|
|
Pretrained T5 small standard language model for Malay. |
|
|
|
## Pretraining Corpus |
|
|
|
`t5-small-standard-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on, |
|
|
|
1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. |
|
2. News title prediction on bahasa news. |
|
3. Next sentence prediction on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. |
|
4. Translated QA Natural. |
|
5. Text Similarity task on translated SNLI and translated MNLI. |
|
6. EN-MS translation. |
|
7. MS-EN translation. |
|
8. Abstractive Summarization. |
|
9. Knowledge Graph triples generation. |
|
10. Paraphrase. |
|
|
|
Preparing steps can reproduce at https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare |
|
|
|
## Pretraining details |
|
|
|
- This model was trained using Google T5 repository https://github.com/google-research/text-to-text-transfer-transformer, on v3-8 TPU. |
|
- All steps can reproduce from here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5 |
|
|
|
## Load Pretrained Model |
|
|
|
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: |
|
|
|
```python |
|
from transformers import T5Tokenizer, T5Model |
|
|
|
model = T5Model.from_pretrained('malay-huggingface/t5-small-bahasa-cased') |
|
tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-small-bahasa-cased') |
|
``` |
|
|
|
## Example using T5ForConditionalGeneration |
|
|
|
```python |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
|
|
tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-small-bahasa-cased') |
|
model = T5ForConditionalGeneration.from_pretrained('malay-huggingface/t5-small-bahasa-cased') |
|
input_ids = tokenizer.encode('soalan: siapakah perdana menteri malaysia?', return_tensors = 'pt') |
|
outputs = model.generate(input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
Output is, |
|
|
|
``` |
|
'Mahathir Mohamad' |
|
``` |
|
|
|
## Supported prefix |
|
|
|
1. `soalan: {string}`, trained using Natural QA. |
|
2. `ringkasan: {string}`, for abstractive summarization. |
|
3. `tajuk: {string}`, for abstractive title. |
|
4. `parafrasa: {string}`, for abstractive paraphrase. |
|
5. `terjemah Inggeris ke Melayu: {string}`, for EN-MS translation. |
|
6. `terjemah Melayu ke Inggeris: {string}`, for MS-EN translation. |
|
7. `grafik pengetahuan: {string}`, for MS text to EN Knowledge Graph triples format. |
|
8. `ayat1: {string1} ayat2: {string2}`, semantic similarity. |