miasetya's picture
fine_tuned_t5_small_model_sec_5_v13
fb398df verified
|
raw
history blame
2.4 kB
metadata
library_name: transformers
license: apache-2.0
base_model: t5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: fine_tuned_t5_small_model_sec_5_v13
    results: []

fine_tuned_t5_small_model_sec_5_v13

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7774
  • Rouge1: 0.4108
  • Rouge2: 0.1781
  • Rougel: 0.2726
  • Rougelsum: 0.2718
  • Gen Len: 92.0632
  • Bert F1: 0.8798

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Bert F1
3.3874 2.1053 200 2.8941 0.4202 0.1821 0.2711 0.2709 96.7632 0.8794
3.0816 4.2105 400 2.8326 0.4123 0.179 0.2691 0.2695 92.4579 0.88
3.0216 6.3158 600 2.8048 0.4129 0.1809 0.2722 0.272 90.7368 0.8804
2.9749 8.4211 800 2.7914 0.4094 0.1786 0.272 0.2714 90.1526 0.8804
2.9656 10.5263 1000 2.7815 0.4105 0.1789 0.2714 0.2709 91.6474 0.8798
2.9433 12.6316 1200 2.7794 0.4099 0.1771 0.2712 0.2704 92.2211 0.8797
2.9274 14.7368 1400 2.7774 0.4108 0.1781 0.2726 0.2718 92.0632 0.8798

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3