michaelfeil's picture
Upload sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 ctranslate fp16 weights
771c802
|
raw
history blame
5.59 kB
metadata
pipeline_tag: sentence-similarity
language: multilingual
license: apache-2.0
tags:
  - ctranslate2
  - int8
  - float16
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers

# Fast-Inference with Ctranslate2

Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.

quantized version of sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

pip install hf-hub-ctranslate2>=3.0.0 ctranslate2>=3.16.0
# from transformers import AutoTokenizer
model_name = "michaelfeil/ct2fast-paraphrase-multilingual-MiniLM-L12-v2"

from hf_hub_ctranslate2 import CT2SentenceTransformer
model = CT2SentenceTransformer(
    model_name, compute_type="int8_float16", device="cuda", 
    repo_contains_ct2=True
)
embeddings = model.encode(
    ["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
    batch_size=32,
    convert_to_numpy=True,
    normalize_embeddings=True,
)
print(embeddings.shape, embeddings)
scores = (embeddings @ embeddings.T) * 100

Checkpoint compatible to ctranslate2>=3.16.0 and hf-hub-ctranslate2>=3.0.0

  • compute_type=int8_float16 for device="cuda"
  • compute_type=int8 for device="cpu"

Converted on 2023-06-18 using

ct2-transformers-converter --model sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --output_dir ~/tmp-ct2fast-paraphrase-multilingual-MiniLM-L12-v2 --force --copy_files tokenizer.json sentence_bert_config.json README.md modules.json special_tokens_map.json config_sentence_transformers.json tokenizer_config.json unigram.json .gitattributes --trust_remote_code

Licence and other remarks:

This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.

Original description

sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

This model was trained by sentence-transformers.

If you find this model helpful, feel free to cite our publication Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks:

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "http://arxiv.org/abs/1908.10084",
}