deberta-v2-xlarge / README.md
DeBERTa's picture
Update README.md
ad6e42c
|
raw
history blame
3.9 kB
metadata
language: en
tags: deberta
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
license: mit

DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data.

Please check the official repository for more details and updates.

This is the DeBERTa V2 xlarge model with 24 layers, 1536 hidden size. The total parameters are 900M and it is trained with 160GB raw data.

Fine-tuning on NLU tasks

We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.

Model SQuAD 1.1 SQuAD 2.0 MNLI-m/mm SST-2 QNLI CoLA RTE MRPC QQP STS-B
F1/EM F1/EM Acc Acc Acc MCC Acc Acc/F1 Acc/F1 P/S
BERT-Large 90.9/84.1 81.8/79.0 86.6/- 93.2 92.3 60.6 70.4 88.0/- 91.3/- 90.0/-
RoBERTa-Large 94.6/88.9 89.4/86.5 90.2/- 96.4 93.9 68.0 86.6 90.9/- 92.2/- 92.4/-
XLNet-Large 95.1/89.7 90.6/87.9 90.8/- 97.0 94.9 69.0 85.9 90.8/- 92.3/- 92.5/-
DeBERTa-Large1 95.5/90.1 90.7/88.0 91.3/91.1 96.5 95.3 69.5 91.0 92.6/94.6 92.3/- 92.8/92.5
DeBERTa-XLarge1 -/- -/- 91.5/91.2 97.0 - - 93.1 92.1/94.3 - 92.9/92.7
DeBERTa-V2-XLarge1 95.8/90.8 91.4/88.9 91.7/91.6 97.5 95.8 71.1 93.9 92.0/94.2 92.3/89.8 92.9/92.9
DeBERTa-V2-XXLarge1,2 96.1/91.4 92.2/89.7 91.7/91.9 97.2 96.0 72.0 93.5 93.1/94.9 92.7/90.3 93.2/93.1

Notes.

cd transformers/examples/text-classification/
export TASK_NAME=mrpc
python -m torch.distributed.launch --nproc_per_node=8 run_glue.py   --model_name_or_path microsoft/deberta-v2-xxlarge   \\\\
--task_name $TASK_NAME   --do_train   --do_eval   --max_seq_length 128   --per_device_train_batch_size 4   \\\\
--learning_rate 3e-6   --num_train_epochs 3   --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16

Citation

If you find DeBERTa useful for your work, please cite the following paper:

@inproceedings{
he2021deberta,
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}