File size: 2,483 Bytes
f39cf74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import re
import torch
import requests
from PIL import Image, ImageDraw
from transformers import AutoProcessor, Kosmos2_5ForConditionalGeneration

repo = "microsoft/kosmos-2.5"
device = "cuda:0"
dtype = torch.bfloat16
model = Kosmos2_5ForConditionalGeneration.from_pretrained(repo, device_map=device, torch_dtype=dtype)
processor = AutoProcessor.from_pretrained(repo)

# sample image
url = "https://huggingface.co/microsoft/kosmos-2.5/blob/main/receipt_00008.png"
image = Image.open(requests.get(url, stream=True).raw)

# bs = 1
prompt = "<ocr>"
inputs = processor(text=prompt, images=image, return_tensors="pt")
height, width = inputs.pop("height"), inputs.pop("width")
raw_width, raw_height = image.size
scale_height = raw_height / height
scale_width = raw_width / width

# bs > 1, batch generation
# inputs = processor(text=[prompt, prompt], images=[image,image], return_tensors="pt")
# height, width = inputs.pop("height"), inputs.pop("width")
# raw_width, raw_height = image.size
# scale_height = raw_height / height[0]
# scale_width = raw_width / width[0]

inputs = {k: v.to(device) if v is not None else None for k, v in inputs.items()}
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
generated_ids = model.generate(
    **inputs,
    max_new_tokens=1024,
)

generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
def post_process(y, scale_height, scale_width):
    y = y.replace(prompt, "")
    if "<md>" in prompt:
        return y
    pattern = r"<bbox><x_\d+><y_\d+><x_\d+><y_\d+></bbox>"
    bboxs_raw = re.findall(pattern, y)
    lines = re.split(pattern, y)[1:]
    bboxs = [re.findall(r"\d+", i) for i in bboxs_raw]
    bboxs = [[int(j) for j in i] for i in bboxs]
    info = ""
    for i in range(len(lines)):
        box = bboxs[i]
        x0, y0, x1, y1 = box
        if not (x0 >= x1 or y0 >= y1):
            x0 = int(x0 * scale_width)
            y0 = int(y0 * scale_height)
            x1 = int(x1 * scale_width)
            y1 = int(y1 * scale_height)
            info += f"{x0},{y0},{x1},{y0},{x1},{y1},{x0},{y1},{lines[i]}"
    return info

output_text = post_process(generated_text[0], scale_height, scale_width)
print(output_text)

draw = ImageDraw.Draw(image)
lines = output_text.split("\n")
for line in lines:
    # draw the bounding box
    line = list(line.split(","))
    if len(line) < 8:
        continue
    line = list(map(int, line[:8]))
    draw.polygon(line, outline="red")
image.save("output.png")