mindwrapped
commited on
Commit
•
aeedd23
1
Parent(s):
00a0dd5
Upload PPO BipedalWalker-v3 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-BipedalWalker-v3.zip +2 -2
- ppo-BipedalWalker-v3/data +22 -22
- ppo-BipedalWalker-v3/policy.optimizer.pth +1 -1
- ppo-BipedalWalker-v3/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 171.53 +/- 21.43
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac5c6968c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac5c696950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac5c6969e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac5c696a70>", "_build": "<function ActorCriticPolicy._build at 0x7fac5c696b00>", "forward": "<function ActorCriticPolicy.forward at 0x7fac5c696b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac5c696c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7fac5c696cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac5c696d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac5c696dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac5c696e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fac5c6d7d50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVRQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLGIWUjAFDlHSUUpSMBGhpZ2iUaBMolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSxiFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIksYhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVfQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgLSwSFlIwBQ5R0lFKUjARoaWdolGgTKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYEAAAAAAAAAAEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYEAAAAAAAAAAEBAQGUaCJLBIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 1500000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652224753.5813951, "learning_rate": 0.0003, "tensorboard_log": "runs/35k6q2p3", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAAOpEz+RRA89KS6PPkApxL1pOVG/AABwtKS2h779/38/AAAAAHQNHz8YGZ29PMPCvgEAgD8AAAAAm9mnPnjMqz42V7M+3kW+PgSJ0T6f5+0+++sNP4rXOD/Rnn4/AACAP9kS/jxOHBm+lTqwPgOkUz13kD+/igBWP0nKBT+gzDE+AAAAAFQLnT+BnLc/+EicPgMAgL8AAAAAmTeYPiLymT5tXKA+NFmrPh8Nuj7vhc4+QRftPk5FEj/bGVk/AACAP4VfID9tjr+97ISdPgjBGjzU21G/wOnDPYAxj70IxrI+AACAPxMpeD/7/3+/JJtzPwMAgD8AAAAAEYGcPu29nT78nKM+7YyuPvKLvj6rHNg+F1v/PpZLHT/P9Fg/AACAP4hJD77RTL8869hUPqXuHD4argy/5xoWPra80D4AAIC/AAAAAOg0kT8AAAAAOR4oPxHYLL8AAIA/bLCkPu7bpz48I68+T7y6PmIIzj4BSeo+P+sMP5o1ND9E5nk/AACAP3PgRD6xKLM9p8G1PgzqI7zo4j+/zPmxvrBoz777/3+/AAAAABifSj9E4hU+cPnAvgEAgL8AAIA/PSi/PnxgxD67Lcw+0A/aPq6o8j5I+Ak/sk0iPw42Sj8AAIA/AACAP4qwVD4swi49pqcVPnWskj35aiy/KACAP4TbTz78/3+/AAAAAM+djT/n/38/UI2sPRQAgL8AAAAA1uSxPgbqsz4WiLg+pOfBPjE/0T58Buc+868DP2kPHz+3ZVk/AACAP203Gz4PlhE+HqEiPiwqvD164TG/mwM0v7DB/D0BAIC/AAAAAFLuTD9/Jwi/AgsIP/v/f78AAIA/jFe/Ppz2wT4tM8g+DUzSPrSU4T71UPw+EkoQPwfeKz+jsmQ/AACAP0lIkD4YnVy8cxBWPnGh3jutYla/+/9/v0CvQzwBAIA/AAAAAN4Bgz/Q3qg7wLGVPimb178AAAAAp7GPPmlTkT5xaZY+qJSfPooarj7/YsQ+CCrnPjplED/ARkY/AACAP9yTGz8taN29qzQ1PmSFFr1olUa/zjr2Pvgpu74r2vk7AACAPxuvjT8AAAAAMoZTPwEAgD8AAAAA/yuQPhCMkz78e5o+N9alPlb0sz5Wdso+UgnsPo1RDz+W6Tg/AACAPwASQT+7tjQ9ZSxOPp2Ejr2Rdki/ZiqcPmAEAr79/38/AAAAAL1UVj6DYwA/MaxmP6uqKjMAAAAAs4G7PjPpvD43JsM+kgvPPpBh4j7MCAA/RXIaP2EARz8AAIA/AACAP37bOT+E5lm9jmlMPiii+jwoPE+/wBs+PKwT5773Dls+AACAP7EZhD960Z0+JFloP6Bfh7oAAAAAAxaKPkaBjD6MYpI+06mePud9sT6348w+TTXxPgbREz9inkk/AACAP9cOnr2fScU8lpkhPouMGD6pRky/WYGcPuWuZT+UCwq/AAAAAKdEkT8AAFw2KyBfP8VVC78AAIA/7JuhPgaNoD611qE+k9umPnFFsj5vXMY+Ht/oPs14Dz91Ckc/AACAP6iTvz4MA9k9BFEbPq0ykDzOvFW/AACANKBOJ74BAIC/AAAAAG14Mj8BAIC/wHx2vm+0r74AAAAAr67CPvxfwT4oycQ+FJbMPqJP2j62N/E+zscKP6ksLD/MsGU/AACAPxEwDz8u8t49/GcXPl8/P729lU6/+MtvvrBkgb78/3+/AAAAAFpnHD8OXx2/kLP+PgEAgD8AAAAAxlScPmx+nj5uCqQ+t4OxPhEKxz4Uwec+w5gOP+/7Pj8AAIA/AACAPzishj4sltu9CGLIPSMRAbzV5Tu/OCAAP0Caybwwm+c9AACAPw3QlT+SqIE/6v0UPwAAgL8AAAAACjCBPvKQgj4lr4g+WUaTPuF7pT43qsM+A2D4Ph5/Hz9bsGI/AACAP0tZ4D32pfE96M+CPsZqjj2YyK++THozvhCYiD0BAIC/AAAAAAdrPz8AAIC/0LTUvQEAgL8AAAAAt8TOPiKv0T6VTdo+ClroPrcR/T6Itg4/Jn0mP0JkST8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.7018112000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOjyE8dOiXkCUhpRSlIwBbJRNQAaMAXSUR0CQxzRhttQ9dX2UKGgGaAloD0MIYp0q3zPYQMCUhpRSlGgVTWwDaBZHQJDh0snRb8p1fZQoaAZoCWgPQwg3T3XITQxgQJSGlFKUaBVNQAZoFkdAkOIfR7Z393V9lChoBmgJaA9DCGRbBpylmF1AlIaUUpRoFU1ABmgWR0CQ4jV/+bVjdX2UKGgGaAloD0MIzefc7XpaVcCUhpRSlGgVTUYBaBZHQJDixNet0V91fZQoaAZoCWgPQwgTgeofRF5gQJSGlFKUaBVNQAZoFkdAkOTxxDLKWHV9lChoBmgJaA9DCEfJq3MMuFxAlIaUUpRoFU1ABmgWR0CQ5cOp84PxdX2UKGgGaAloD0MIi98UVir0PcCUhpRSlGgVTT8DaBZHQJDl8X0oSct1fZQoaAZoCWgPQwhxWvCir29eQJSGlFKUaBVNQAZoFkdAkOcD3/Pw/nV9lChoBmgJaA9DCF9hwf2ATVtAlIaUUpRoFU1ABmgWR0CQ6Gl7dBSldX2UKGgGaAloD0MIISI17WIvWcCUhpRSlGgVS1RoFkdAkOq8/QjUu3V9lChoBmgJaA9DCCjwTj49ljzAlIaUUpRoFU31A2gWR0CQ6uUypJf6dX2UKGgGaAloD0MI7FG4HoWFYUCUhpRSlGgVTUAGaBZHQJDu7VLBbfR1fZQoaAZoCWgPQwiaJJaUuxxgQJSGlFKUaBVNQAZoFkdAkPDQlSjxkXV9lChoBmgJaA9DCC8xlumXI1DAlIaUUpRoFU0gAmgWR0CQ8P+PBBRidX2UKGgGaAloD0MI8bioFpHJYECUhpRSlGgVTUAGaBZHQJD4iQFLWZt1fZQoaAZoCWgPQwjs+C8QBBxgQJSGlFKUaBVNQAZoFkdAkQ+DE74i5nV9lChoBmgJaA9DCJoHsMivI15AlIaUUpRoFU1ABmgWR0CRD/32mHgxdX2UKGgGaAloD0MIEYyDS8fcNsCUhpRSlGgVTe8DaBZHQJEQ5k+X7ch1fZQoaAZoCWgPQwjg2omSkDQ5wJSGlFKUaBVNtgNoFkdAkRIZzcRDkXV9lChoBmgJaA9DCJdSl4xjh1DAlIaUUpRoFU2WAmgWR0CRFEU8FINFdX2UKGgGaAloD0MIl4v4TsxOXkCUhpRSlGgVTUAGaBZHQJEZP0th/iJ1fZQoaAZoCWgPQwjy0He3skQSQJSGlFKUaBVNZgVoFkdAkT5MvmHP/3V9lChoBmgJaA9DCEljtI6q8EXAlIaUUpRoFU3wA2gWR0CRPxRIBikPdX2UKGgGaAloD0MIIPEr1nBAX0CUhpRSlGgVTUAGaBZHQJFAPTPSlWR1fZQoaAZoCWgPQwifceFASJpXQJSGlFKUaBVNQAZoFkdAkUEl3MY/FHV9lChoBmgJaA9DCIOHad/cwljAlIaUUpRoFUtCaBZHQJFCD1lGwzN1fZQoaAZoCWgPQwiyEB0CR4IhQJSGlFKUaBVNcgVoFkdAkUOaYJE6UHV9lChoBmgJaA9DCFEWvr7WVRPAlIaUUpRoFU2WBGgWR0CRQ8MSK3uvdX2UKGgGaAloD0MIyhZJu9GVWkCUhpRSlGgVTUAGaBZHQJFEUvXbudB1fZQoaAZoCWgPQwjjNEQV/pA9wJSGlFKUaBVNkQNoFkdAkURc6q8143V9lChoBmgJaA9DCNbG2AkvbFrAlIaUUpRoFUvOaBZHQJFEqjZcs191fZQoaAZoCWgPQwj7ko0HW5pfQJSGlFKUaBVNQAZoFkdAkUVpL26ClXV9lChoBmgJaA9DCBmPUglPSlXAlIaUUpRoFU0JAWgWR0CRRXGQSzw+dX2UKGgGaAloD0MIGoo73uSqXECUhpRSlGgVTUAGaBZHQJFJCf7Jnxt1fZQoaAZoCWgPQwj/PA0YJAxSwJSGlFKUaBVNKAFoFkdAkUoSvHLidnV9lChoBmgJaA9DCL7Z5sb0FFnAlIaUUpRoFUt+aBZHQJFfx97Wuox1fZQoaAZoCWgPQwh3hxQDJEhVwJSGlFKUaBVNUwFoFkdAkWDIk/r0KHV9lChoBmgJaA9DCJNzYg/tNVPAlIaUUpRoFU23AWgWR0CRY8Ft8/lidX2UKGgGaAloD0MIaJWZ0vorTMCUhpRSlGgVTTcCaBZHQJFnE9s7+1l1fZQoaAZoCWgPQwirB8xDplQhwJSGlFKUaBVNEwRoFkdAkWhZ+H8CP3V9lChoBmgJaA9DCDpBmxw+zFxAlIaUUpRoFU1ABmgWR0CRbdzKs+3ZdX2UKGgGaAloD0MISL99HThMYECUhpRSlGgVTUAGaBZHQJFuXizcAR11fZQoaAZoCWgPQwize/KwUNZfQJSGlFKUaBVNQAZoFkdAkW9ETURWcXV9lChoBmgJaA9DCO2d0ValkmBAlIaUUpRoFU1ABmgWR0CRcGwgTyrgdX2UKGgGaAloD0MIkL3e/XEXYUCUhpRSlGgVTUAGaBZHQJFyec6Nly11fZQoaAZoCWgPQwgdIm5OJQdYwJSGlFKUaBVLjWgWR0CRdjWvKU3XdX2UKGgGaAloD0MIHHxhMlUgVMCUhpRSlGgVTQ4BaBZHQJF2c9HMEA51fZQoaAZoCWgPQwimCkYldcIUQJSGlFKUaBVNrwVoFkdAkZGXf/FR53V9lChoBmgJaA9DCNQMqaJ4mVHAlIaUUpRoFU0MAmgWR0CRkbysS00FdX2UKGgGaAloD0MIHt/eNeg3WkCUhpRSlGgVTUAGaBZHQJGS7GDL8rJ1fZQoaAZoCWgPQwjqB3WRQg9NwJSGlFKUaBVNnAJoFkdAkZOfHYHxBnV9lChoBmgJaA9DCJi9bDttQ19AlIaUUpRoFU1ABmgWR0CRlWbJfYz0dX2UKGgGaAloD0MIAqCKG7ecQMCUhpRSlGgVTWMEaBZHQJGVco2GZeB1fZQoaAZoCWgPQwgQeGAA4SBbQJSGlFKUaBVNQAZoFkdAkZcyHRCx/3V9lChoBmgJaA9DCNqs+lxtDFZAlIaUUpRoFU1ABmgWR0CRlzrVe8f3dX2UKGgGaAloD0MIhZZ1/1g6WkCUhpRSlGgVTUAGaBZHQJGb0OkLx7R1fZQoaAZoCWgPQwgCoIobNxtgQJSGlFKUaBVNQAZoFkdAkZ4mHLzPKXV9lChoBmgJaA9DCCqRRC+jw19AlIaUUpRoFU1ABmgWR0CRny8FpwjudX2UKGgGaAloD0MIyxMIO8VKIMCUhpRSlGgVTfoFaBZHQJGkrtgKF7F1fZQoaAZoCWgPQwhzuFZ72F9dQJSGlFKUaBVNQAZoFkdAkaVlFUhmoXV9lChoBmgJaA9DCO58PzVelWJAlIaUUpRoFU1ABmgWR0CRv7Vlf7aadX2UKGgGaAloD0MIr0M1JVk3NcCUhpRSlGgVTUgEaBZHQJHGeACnxax1fZQoaAZoCWgPQwgUWtb9Y39bQJSGlFKUaBVNQAZoFkdAkcgfcer+53V9lChoBmgJaA9DCHMuxVVl9F9AlIaUUpRoFU1ABmgWR0CRyGFGoaUBdX2UKGgGaAloD0MI6kDWU6vcXECUhpRSlGgVTUAGaBZHQJHQI4//vOR1fZQoaAZoCWgPQwhkdha9U11YQJSGlFKUaBVNQAZoFkdAkdBIfGMn7nV9lChoBmgJaA9DCDDa44X0jWBAlIaUUpRoFU1ABmgWR0CR0YLV4HHFdX2UKGgGaAloD0MIv9alRuh6WkCUhpRSlGgVTUAGaBZHQJHSKGj9GZx1fZQoaAZoCWgPQwjmCBnIs5JWQJSGlFKUaBVNQAZoFkdAkdP7SNOuaHV9lChoBmgJaA9DCNbh6CrdM1nAlIaUUpRoFUtwaBZHQJHVNBF/hEV1fZQoaAZoCWgPQwihZd0/FvJawJSGlFKUaBVLOWgWR0CR1X/TLGJfdX2UKGgGaAloD0MIGcVyS6u+WkCUhpRSlGgVTUAGaBZHQJHVyQSzw+d1fZQoaAZoCWgPQwhKea2E7utYQJSGlFKUaBVNQAZoFkdAkdXR4Uvf0nV9lChoBmgJaA9DCHRC6KBLhlTAlIaUUpRoFU0VAmgWR0CR1m3solUqdX2UKGgGaAloD0MIQQ+1bRgzXECUhpRSlGgVTUAGaBZHQJHt/IFNcnp1fZQoaAZoCWgPQwjON6J71ttaQJSGlFKUaBVNQAZoFkdAkfBrJ8v25HV9lChoBmgJaA9DCLnjTX6LTVxAlIaUUpRoFU1ABmgWR0CR8YDGtITXdX2UKGgGaAloD0MIURVT6SefWcCUhpRSlGgVS0hoFkdAkfJqGlANX3V9lChoBmgJaA9DCO84RUdyPVVAlIaUUpRoFU1ABmgWR0CR9wMhHLA6dX2UKGgGaAloD0MIMsaH2ctyWkCUhpRSlGgVTUAGaBZHQJH3ssTWXkZ1fZQoaAZoCWgPQwiKWppbIRpZQJSGlFKUaBVNQAZoFkdAkf5us1baAXV9lChoBmgJaA9DCFn60AX1fllAlIaUUpRoFU1ABmgWR0CSBRi6xxDLdX2UKGgGaAloD0MIbeUl/5MgWECUhpRSlGgVTUAGaBZHQJIacWl/H5t1fZQoaAZoCWgPQwgz/KcbKLxBwJSGlFKUaBVNwANoFkdAkhtOdoWYW3V9lChoBmgJaA9DCEONQpJZHlTAlIaUUpRoFU3EAWgWR0CSHgxeb/fgdX2UKGgGaAloD0MIGJY/3xb/WECUhpRSlGgVTUAGaBZHQJIiTyVfNRp1fZQoaAZoCWgPQwivBigNNfdZQJSGlFKUaBVNQAZoFkdAkiJzdxhlUnV9lChoBmgJaA9DCBiV1AloEV1AlIaUUpRoFU1ABmgWR0CSI6mxdIGydX2UKGgGaAloD0MI21Gco45FXUCUhpRSlGgVTUAGaBZHQJInWxX4j8l1fZQoaAZoCWgPQwgfgNQmTj5eQJSGlFKUaBVNQAZoFkdAkieoN7SiNHV9lChoBmgJaA9DCL3jFB3JQ1hAlIaUUpRoFU1ABmgWR0CSJ/Jgb6xgdX2UKGgGaAloD0MI36mAe554XECUhpRSlGgVTUAGaBZHQJIn+tr9ETh1fZQoaAZoCWgPQwjaHVIMkEFeQJSGlFKUaBVNQAZoFkdAkiifIbOu73V9lChoBmgJaA9DCGMJa2PsMFbAlIaUUpRoFUvhaBZHQJIuGLBKtgd1fZQoaAZoCWgPQwjlub4PBzFdQJSGlFKUaBVNQAZoFkdAkjAPt6X0G3V9lChoBmgJaA9DCCuJ7IMsdl9AlIaUUpRoFU1ABmgWR0CSMPS/j81odX2UKGgGaAloD0MIc/T4vU2hWkCUhpRSlGgVTUAGaBZHQJI1d26kIop1fZQoaAZoCWgPQwg6zm3CvZddQJSGlFKUaBVNQAZoFkdAkkmK+WWyDHV9lChoBmgJaA9DCK8l5IOevF1AlIaUUpRoFU1ABmgWR0CSVvg2Ifr9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 364, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a9cf9f7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a9cf9f830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a9cf9f8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a9cf9f950>", "_build": "<function ActorCriticPolicy._build at 0x7f1a9cf9f9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1a9cf9fa70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a9cf9fb00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1a9cf9fb90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a9cf9fc20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a9cf9fcb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a9cf9fd40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1a9cf756f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653010119.2627118, "learning_rate": 0.0003, "tensorboard_log": "runs/25lggwpf", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAMQ5+D34eHW7I6Z6PnJW7bzN5ay+vO9/vyBZcL5Z6kA/AAAAAJDQjD/YSeC+HlVvP6uq4jUAAAAAaH6VPmfwlj5ByJs+wZ+mPk7ctz4SgM4+9z3wPmhxET+3c0g/AACAP3BkHj9oQ+S8EsLGPhf+3L3jJUu/INH+vlyZuL7JzZ0+AAAAAJdnjz+69Co/IAZaPwAAgD8AAAAAqCiLPlGCiz4IBo8+QRiXPm7YpD4XDro+vOraPldGBz/QNkM/AACAP3v78j2OUa89LdMpPqTVyT39Oqy+/TwtP1Bciz37/3+/AAAAAO8lez+cFlm+vBuaPgAAgL8AAIA/WaeuPlS0rz7NsLU+GLnAPmxP0j6NXew+UkMJPyrwLT8OTHA/AACAP/tckT+hrB88fJYYPWqgBb6fCFK/AEAzNwD4FL/hy42+AACAP7F8WT9PEFE/1G1vPwAAADQAAAAAtwOWPk/glD7r85Y+/ZucPgWMpj7qMbY+izrOPujH9z7n2CI/AACAP0KNjz02lS2+vJXjPgBwUb0BXE6/wK75PBD6zD6PrYA/AAAAAAwmgz9Ai8I8jBB0Pyg/5z8AAIA/RCqEPtWRhT5bsIo+EVCTPtpIoD5jubM+TojSPjqSBj9mLjI/AACAP0sEKL5T2709JSRMPtEW1D2m5v++2NNjProBrD79/3+/AAAAAOrmkD9AOZ+8WBEqPwAAgL8AAIA/RwmjPhtjpT7+mK0+GN67PomP0j4KjvM+iIcPP6rkNT/ZB2w/AACAP/4VxT63Xpa9Li6QPiiCC74d01K/AMCht/BjF74rqB8+AACAP5Q3kT8AAFA1AiBtPwAAADcAAAAA+S+CPo8Wgj59BoU+YSKNPn7ImT5Bfqs+wOLDPva77D6ysyM/AACAP4kS9T7SOYA9TYVyPlfCCD1edC+/AQCAv6hhIb5k2RU/AACAP4a/iD/p0da+4P9NPwEAgD8AAAAABuiYPnkemD7uO5s+HWajPhIKsD45dcM+KzroPnOWGj9bEGg/AACAP/9LcT0fQ/89uQVoPtVOET2yFea+WA06vlA59b0AAIC/AAAAAFdTgz9A+R2+VAMjPgAAgL8AAAAA7+m4PpYcvD4dq8M+C/vQPvyv5j61hAM/DGMbP7MZRD8AAIA/AACAP/IcKT92K1I9nnKZPuU4QLwDbmW/kqSyv6AkU73L7mc/AAAAAAFNdT8UGqo+MMj3PQAAgL8AAAAAtsCVPqxElT5CLpg+VPCePkr4qj4Q2sA+jx7hPrjHCT+6djk/AACAPwnrcD4i6Qc9/DIaPnYahb2YgS2/uX1cPiD8dr7//3+/AAAAADo6lD8BAIA/ANPNO/3/f78AAAAAcFOjPkdspz5fwq8+zGG9PkhZ0D54MO0+MW8OP23mND9ngGw/AACAPxgMbT+UL4u8DvxZPr9hTr28vFW/AAAANNidvb75SDu9AACAP96Fij/3/38/8JEYP/X/fz8AAAAAsjKhPhBOoj5NIKg+Xv2yPhibxD7UN94+OU4GP5ezMD8Tvmo/AACAP0Z2vj6NdWM9YAgcPqiCmb3foNG+X6kwP7hBGb8BAIC/AAAAAIxwgT+MRBa/rKmjPv3/fz8AAAAAAQiYPkxnlj7Sqps+yCykPuOKrT4HYb8+ZObgPv2EEz/MClI/AACAP+2WTz4cSe89D9Q1PnZx7rzEioe+sB93PQxUKr8AAIC/AAAAABJ1Uz/3goe+uEA6vktUNL8AAAAADNW9PkqtwT7eTck+WSrYPvxY7T4EDAY/DfAbP0RNQD8AAIA/AACAP0WYPL3P5Jg9KasKPhLs+j0/1zm/hVWAP/Y2QT+DC/y/AACAP3Qjjz8AoF64qn8vP/G+gL8AAIA/7jCsPhAgrT7SR7A+sDa3PkuCwj4RYNc+r0r8Pq6OGj+U6V0/AACAPxgFMT7vTOa9bdawPuMnRL0oLFC/AAAAAMosrz499CE/AAAAADIBjj8AAAAABuMSPwQAgL8AAAAABmePPsF1kj5qBZs+6CipPmNcwD5CeuM+DXoKP3GPLz8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0005760000000000209, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwCZr1MNMYECUhpRSlIwBbJRNQAaMAXSUR0CMTQHt4RmLdX2UKGgGaAloD0MI/Ul87gSXWkCUhpRSlGgVTUAGaBZHQIxSx5s0pEx1fZQoaAZoCWgPQwgRct7/x9hTQJSGlFKUaBVNQAZoFkdAjFoUVJtix3V9lChoBmgJaA9DCKaBH9Ww4FVAlIaUUpRoFU1ABmgWR0CMXIa72+PBdX2UKGgGaAloD0MIECGunL3sWUCUhpRSlGgVTUAGaBZHQIxd/bdrO7h1fZQoaAZoCWgPQwgXRnpRuzFXQJSGlFKUaBVNQAZoFkdAjF4vSMLncXV9lChoBmgJaA9DCBCugEI9kldAlIaUUpRoFU1ABmgWR0CMZCz3yqdZdX2UKGgGaAloD0MIokRLHk+GUkCUhpRSlGgVTUAGaBZHQIxuxGKAJ9l1fZQoaAZoCWgPQwgfnbryWT5FwJSGlFKUaBVNvANoFkdAjHIizTnaFnV9lChoBmgJaA9DCFmmXyLez1xAlIaUUpRoFU1ABmgWR0CMdgyeI2wWdX2UKGgGaAloD0MI3J+Lhox3QcCUhpRSlGgVTTgEaBZHQIytJuQ6p5x1fZQoaAZoCWgPQwjEJced0v5bQJSGlFKUaBVNQAZoFkdAjLPpmEoOQXV9lChoBmgJaA9DCLXeb7TjiVtAlIaUUpRoFU1ABmgWR0CMvMewLVnVdX2UKGgGaAloD0MIptJPOLtEW0CUhpRSlGgVTUAGaBZHQIy9jEit7rt1fZQoaAZoCWgPQwhDG4ANiL1aQJSGlFKUaBVNQAZoFkdAjMPC1iONpHV9lChoBmgJaA9DCCE82jhi+UfAlIaUUpRoFU19BGgWR0CMyu1G9YfXdX2UKGgGaAloD0MIH4SAfAl1HkCUhpRSlGgVTSsGaBZHQIzQYTwlSjx1fZQoaAZoCWgPQwg+ldOekj5eQJSGlFKUaBVNQAZoFkdAjNNtQsPJ73V9lChoBmgJaA9DCLZHb7iPCFZAlIaUUpRoFU1ABmgWR0CM2PKPn0TUdX2UKGgGaAloD0MILJs5JLUIK8CUhpRSlGgVTaAEaBZHQI0HVyHVPN51fZQoaAZoCWgPQwirWWd8X8RcQJSGlFKUaBVNQAZoFkdAjQfY8U21lXV9lChoBmgJaA9DCG+fVWZK3l5AlIaUUpRoFU1ABmgWR0CNCjUb1h9cdX2UKGgGaAloD0MIeV2/YDd6UsCUhpRSlGgVTTYCaBZHQI0LD9uP3i91fZQoaAZoCWgPQwhcHmtGBjlbQJSGlFKUaBVNQAZoFkdAjQurUsnRcHV9lChoBmgJaA9DCMeDLXb7vELAlIaUUpRoFU1tA2gWR0CNDQ/vfCQ+dX2UKGgGaAloD0MIGOqwwi0rRsCUhpRSlGgVTRIDaBZHQI0Qau2Zy+91fZQoaAZoCWgPQwiOdAZGXk5YQJSGlFKUaBVNQAZoFkdAjRFhRqGlAXV9lChoBmgJaA9DCKBwdmuZtl5AlIaUUpRoFU1ABmgWR0CNG1ocJdB0dX2UKGgGaAloD0MInE8dq5T8W0CUhpRSlGgVTUAGaBZHQI0ihO32EkB1fZQoaAZoCWgPQwg8+IkD6GBbQJSGlFKUaBVNQAZoFkdAjS+qQA+6iHV9lChoBmgJaA9DCDP7PEZ5MknAlIaUUpRoFU1WA2gWR0CNMXQu27WedX2UKGgGaAloD0MIPZzAdFoaWsCUhpRSlGgVS3RoFkdAjTgelsP8RHV9lChoBmgJaA9DCP5fdeRIgVxAlIaUUpRoFU1ABmgWR0COCTKHO8kEdX2UKGgGaAloD0MIxty1hHw3XUCUhpRSlGgVTUAGaBZHQI4Wzbi6xxF1fZQoaAZoCWgPQwjNdK+T+no2wJSGlFKUaBVN1wRoFkdAjhgEzfrKNnV9lChoBmgJaA9DCE3YfjLGTV5AlIaUUpRoFU1ABmgWR0COHMvFm4AkdX2UKGgGaAloD0MI5L7VOnHsWECUhpRSlGgVTUAGaBZHQI4gJUvPC2t1fZQoaAZoCWgPQwj8q8d9q2dGwJSGlFKUaBVNAgRoFkdAjidP114gR3V9lChoBmgJaA9DCBLeHoSAaVnAlIaUUpRoFU0XAWgWR0COKFyPMjeLdX2UKGgGaAloD0MI9iUbD7apXkCUhpRSlGgVTUAGaBZHQI4sR0MgEEF1fZQoaAZoCWgPQwi8zRsnhY1dQJSGlFKUaBVNQAZoFkdAji8QkPczqXV9lChoBmgJaA9DCCXP9X04RGBAlIaUUpRoFU1ABmgWR0COL9RWtEG8dX2UKGgGaAloD0MIAP2+f/PkWUCUhpRSlGgVTUAGaBZHQI4wcFt8/lh1fZQoaAZoCWgPQwgmj6flB8VYQJSGlFKUaBVNQAZoFkdAjjHVLzwtrnV9lChoBmgJaA9DCEAziA/sOFxAlIaUUpRoFU1ABmgWR0CONV5HmRvFdX2UKGgGaAloD0MIlZ9U+3TUXECUhpRSlGgVTUAGaBZHQI42aubI91V1fZQoaAZoCWgPQwjY9Qt2wxVaQJSGlFKUaBVNQAZoFkdAjkExh2GIsXV9lChoBmgJaA9DCDelvFZCYVtAlIaUUpRoFU1ABmgWR0COfaenQ6ZIdX2UKGgGaAloD0MIVIuIYvJaUcCUhpRSlGgVTWcCaBZHQI6BYc94eLh1fZQoaAZoCWgPQwhNwK+RJHJaQJSGlFKUaBVNQAZoFkdAjoWWk8A7xXV9lChoBmgJaA9DCN8zEqERjV1AlIaUUpRoFU1ABmgWR0COjPjghr31dX2UKGgGaAloD0MImdamsb29WUCUhpRSlGgVTUAGaBZHQI6aKe05U991fZQoaAZoCWgPQwjH155ZElNfQJSGlFKUaBVNQAZoFkdAjqAAKneiz3V9lChoBmgJaA9DCBwo8E4+EVpAlIaUUpRoFU1ABmgWR0COoyRTS9dvdX2UKGgGaAloD0MISrN5HAZmUMCUhpRSlGgVTdUCaBZHQI7Sco+fRNR1fZQoaAZoCWgPQwhc598u+05eQJSGlFKUaBVNQAZoFkdAjtLeAuqWC3V9lChoBmgJaA9DCLMngc05RFdAlIaUUpRoFU1ABmgWR0CO0/0I1LrYdX2UKGgGaAloD0MIMZi/QuZSWkCUhpRSlGgVTUAGaBZHQI7YFv60pmV1fZQoaAZoCWgPQwidTNwqiL9aQJSGlFKUaBVNQAZoFkdAjtrcBuGbkXV9lChoBmgJaA9DCMQlx53SVVpAlIaUUpRoFU1ABmgWR0CO26XpnpSrdX2UKGgGaAloD0MIceKrHcV+WECUhpRSlGgVTUAGaBZHQI7cRbwBo251fZQoaAZoCWgPQwgvpS4Zx9BTQJSGlFKUaBVNQAZoFkdAjt2uXE61cHV9lChoBmgJaA9DCD/iV6zhQ1tAlIaUUpRoFU1ABmgWR0CO4hLFGXoldX2UKGgGaAloD0MIHqm+84tpV8CUhpRSlGgVS/VoFkdAjuiSNwR5DHV9lChoBmgJaA9DCN3OvvIgk1lAlIaUUpRoFU1ABmgWR0CO7AKrq+rVdX2UKGgGaAloD0MI5Nak2xLWXkCUhpRSlGgVTUAGaBZHQI7/CJwbVBl1fZQoaAZoCWgPQwg2PL1SlhdcQJSGlFKUaBVNQAZoFkdAj4UIOhCdBnV9lChoBmgJaA9DCJNvtrkxMltAlIaUUpRoFU1ABmgWR0CPjEIgNgBtdX2UKGgGaAloD0MIntMs0O5QW0CUhpRSlGgVTUAGaBZHQI+ZZKg7HQ11fZQoaAZoCWgPQwirdeJyvNpZQJSGlFKUaBVNQAZoFkdAj5697v5P/XV9lChoBmgJaA9DCF2G/3QDWl1AlIaUUpRoFU1ABmgWR0CPocyM1jy4dX2UKGgGaAloD0MI+tNGdTrQ+7+UhpRSlGgVTaEFaBZHQI+lE0gr6Lx1fZQoaAZoCWgPQwh+5UF6imQ+wJSGlFKUaBVNkARoFkdAj6Y96Tnq3XV9lChoBmgJaA9DCKhvmdNlsl1AlIaUUpRoFU1ABmgWR0CPqEiUPhAGdX2UKGgGaAloD0MIPZtVn6vYXECUhpRSlGgVTUAGaBZHQI+osWqLjxV1fZQoaAZoCWgPQwigpSvYRqtfQJSGlFKUaBVNQAZoFkdAj6nPY4ACGXV9lChoBmgJaA9DCFvvN9pxdltAlIaUUpRoFU1ABmgWR0CPsS4qgAZLdX2UKGgGaAloD0MIJ09ZTdc8XECUhpRSlGgVTUAGaBZHQI+xzqD9Oyp1fZQoaAZoCWgPQwjpD808uY9dQJSGlFKUaBVNQAZoFkdAj7M4G+sYEXV9lChoBmgJaA9DCOHs1jIZj1dAlIaUUpRoFU1ABmgWR0CPt4YLLIPtdX2UKGgGaAloD0MIW1zjM9lhW0CUhpRSlGgVTUAGaBZHQI/pU8DB/I91fZQoaAZoCWgPQwgG1nH8UK9QwJSGlFKUaBVN4QJoFkdAj+m7MgU1ynV9lChoBmgJaA9DCHkB9tGpQlHAlIaUUpRoFU2WAmgWR0CP9PqqwQlKdX2UKGgGaAloD0MI5Euo4PDdWECUhpRSlGgVTUAGaBZHQI/8RaA4GUx1fZQoaAZoCWgPQwiHxahr7XFdQJSGlFKUaBVNQAZoFkdAkAIT/yXlbXV9lChoBmgJaA9DCMaIRKFlzl5AlIaUUpRoFU1ABmgWR0CQBbvovBacdX2UKGgGaAloD0MIAkUsYtjJU8CUhpRSlGgVTWMBaBZHQJAHxepn6Ed1fZQoaAZoCWgPQwjzVl2HaopgQJSGlFKUaBVNQAZoFkdAkCMGCEpRXXV9lChoBmgJaA9DCKnAyTZwG11AlIaUUpRoFU1ABmgWR0CQJIX9R77bdX2UKGgGaAloD0MI0xIro5HEV0CUhpRSlGgVTUAGaBZHQJAmJozvZyx1fZQoaAZoCWgPQwjnU8cqpbxXQJSGlFKUaBVNQAZoFkdAkCbFVLi++XV9lChoBmgJaA9DCOSeru5YXl5AlIaUUpRoFU1ABmgWR0CQJ9Wom5UcdX2UKGgGaAloD0MIRwA3ixfhXECUhpRSlGgVTUAGaBZHQJAoiwbEP2B1fZQoaAZoCWgPQwjVBieiXz1bQJSGlFKUaBVNQAZoFkdAkCxC0rsjV3V9lChoBmgJaA9DCC4e3nNgU11AlIaUUpRoFU1ABmgWR0CQLJKZUkv9dX2UKGgGaAloD0MIrRbYYyI4WkCUhpRSlGgVTUAGaBZHQJAtR+ocaOx1fZQoaAZoCWgPQwhB9KRMaqRXQJSGlFKUaBVNQAZoFkdAkC9swL3K0XV9lChoBmgJaA9DCMHmHDwTmlxAlIaUUpRoFU1ABmgWR0CQNDhRqGlAdX2UKGgGaAloD0MIR8uBHupKYECUhpRSlGgVTUAGaBZHQJA0akFfReF1fZQoaAZoCWgPQwjlYaHWNN5XQJSGlFKUaBVNQAZoFkdAkDn6hpQDWHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 244, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-BipedalWalker-v3.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7391ce59284d27d1b3fe911312650ad0367a5d6d811f17620d387ce4a8b27597
|
3 |
+
size 171953
|
ppo-BipedalWalker-v3/data
CHANGED
@@ -4,25 +4,25 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
-
":serialized:": "
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
24
|
@@ -35,7 +35,7 @@
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
-
":serialized:": "
|
39 |
"dtype": "float32",
|
40 |
"_shape": [
|
41 |
4
|
@@ -47,21 +47,21 @@
|
|
47 |
"_np_random": null
|
48 |
},
|
49 |
"n_envs": 16,
|
50 |
-
"num_timesteps":
|
51 |
-
"_total_timesteps":
|
52 |
"_num_timesteps_at_start": 0,
|
53 |
"seed": null,
|
54 |
"action_noise": null,
|
55 |
-
"start_time":
|
56 |
"learning_rate": 0.0003,
|
57 |
-
"tensorboard_log": "runs/
|
58 |
"lr_schedule": {
|
59 |
":type:": "<class 'function'>",
|
60 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
61 |
},
|
62 |
"_last_obs": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
-
":serialized:": "
|
65 |
},
|
66 |
"_last_episode_starts": {
|
67 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -71,16 +71,16 @@
|
|
71 |
"_episode_num": 0,
|
72 |
"use_sde": false,
|
73 |
"sde_sample_freq": -1,
|
74 |
-
"_current_progress_remaining": 0.
|
75 |
"ep_info_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
-
":serialized:": "
|
78 |
},
|
79 |
"ep_success_buffer": {
|
80 |
":type:": "<class 'collections.deque'>",
|
81 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
},
|
83 |
-
"_n_updates":
|
84 |
"n_steps": 1024,
|
85 |
"gamma": 0.999,
|
86 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a9cf9f7a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a9cf9f830>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a9cf9f8c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a9cf9f950>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1a9cf9f9e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1a9cf9fa70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a9cf9fb00>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1a9cf9fb90>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a9cf9fc20>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a9cf9fcb0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a9cf9fd40>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f1a9cf756f0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
24
|
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
"dtype": "float32",
|
40 |
"_shape": [
|
41 |
4
|
|
|
47 |
"_np_random": null
|
48 |
},
|
49 |
"n_envs": 16,
|
50 |
+
"num_timesteps": 1000000,
|
51 |
+
"_total_timesteps": 1000000,
|
52 |
"_num_timesteps_at_start": 0,
|
53 |
"seed": null,
|
54 |
"action_noise": null,
|
55 |
+
"start_time": 1653010119.2627118,
|
56 |
"learning_rate": 0.0003,
|
57 |
+
"tensorboard_log": "runs/25lggwpf",
|
58 |
"lr_schedule": {
|
59 |
":type:": "<class 'function'>",
|
60 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
61 |
},
|
62 |
"_last_obs": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAMQ5+D34eHW7I6Z6PnJW7bzN5ay+vO9/vyBZcL5Z6kA/AAAAAJDQjD/YSeC+HlVvP6uq4jUAAAAAaH6VPmfwlj5ByJs+wZ+mPk7ctz4SgM4+9z3wPmhxET+3c0g/AACAP3BkHj9oQ+S8EsLGPhf+3L3jJUu/INH+vlyZuL7JzZ0+AAAAAJdnjz+69Co/IAZaPwAAgD8AAAAAqCiLPlGCiz4IBo8+QRiXPm7YpD4XDro+vOraPldGBz/QNkM/AACAP3v78j2OUa89LdMpPqTVyT39Oqy+/TwtP1Bciz37/3+/AAAAAO8lez+cFlm+vBuaPgAAgL8AAIA/WaeuPlS0rz7NsLU+GLnAPmxP0j6NXew+UkMJPyrwLT8OTHA/AACAP/tckT+hrB88fJYYPWqgBb6fCFK/AEAzNwD4FL/hy42+AACAP7F8WT9PEFE/1G1vPwAAADQAAAAAtwOWPk/glD7r85Y+/ZucPgWMpj7qMbY+izrOPujH9z7n2CI/AACAP0KNjz02lS2+vJXjPgBwUb0BXE6/wK75PBD6zD6PrYA/AAAAAAwmgz9Ai8I8jBB0Pyg/5z8AAIA/RCqEPtWRhT5bsIo+EVCTPtpIoD5jubM+TojSPjqSBj9mLjI/AACAP0sEKL5T2709JSRMPtEW1D2m5v++2NNjProBrD79/3+/AAAAAOrmkD9AOZ+8WBEqPwAAgL8AAIA/RwmjPhtjpT7+mK0+GN67PomP0j4KjvM+iIcPP6rkNT/ZB2w/AACAP/4VxT63Xpa9Li6QPiiCC74d01K/AMCht/BjF74rqB8+AACAP5Q3kT8AAFA1AiBtPwAAADcAAAAA+S+CPo8Wgj59BoU+YSKNPn7ImT5Bfqs+wOLDPva77D6ysyM/AACAP4kS9T7SOYA9TYVyPlfCCD1edC+/AQCAv6hhIb5k2RU/AACAP4a/iD/p0da+4P9NPwEAgD8AAAAABuiYPnkemD7uO5s+HWajPhIKsD45dcM+KzroPnOWGj9bEGg/AACAP/9LcT0fQ/89uQVoPtVOET2yFea+WA06vlA59b0AAIC/AAAAAFdTgz9A+R2+VAMjPgAAgL8AAAAA7+m4PpYcvD4dq8M+C/vQPvyv5j61hAM/DGMbP7MZRD8AAIA/AACAP/IcKT92K1I9nnKZPuU4QLwDbmW/kqSyv6AkU73L7mc/AAAAAAFNdT8UGqo+MMj3PQAAgL8AAAAAtsCVPqxElT5CLpg+VPCePkr4qj4Q2sA+jx7hPrjHCT+6djk/AACAPwnrcD4i6Qc9/DIaPnYahb2YgS2/uX1cPiD8dr7//3+/AAAAADo6lD8BAIA/ANPNO/3/f78AAAAAcFOjPkdspz5fwq8+zGG9PkhZ0D54MO0+MW8OP23mND9ngGw/AACAPxgMbT+UL4u8DvxZPr9hTr28vFW/AAAANNidvb75SDu9AACAP96Fij/3/38/8JEYP/X/fz8AAAAAsjKhPhBOoj5NIKg+Xv2yPhibxD7UN94+OU4GP5ezMD8Tvmo/AACAP0Z2vj6NdWM9YAgcPqiCmb3foNG+X6kwP7hBGb8BAIC/AAAAAIxwgT+MRBa/rKmjPv3/fz8AAAAAAQiYPkxnlj7Sqps+yCykPuOKrT4HYb8+ZObgPv2EEz/MClI/AACAP+2WTz4cSe89D9Q1PnZx7rzEioe+sB93PQxUKr8AAIC/AAAAABJ1Uz/3goe+uEA6vktUNL8AAAAADNW9PkqtwT7eTck+WSrYPvxY7T4EDAY/DfAbP0RNQD8AAIA/AACAP0WYPL3P5Jg9KasKPhLs+j0/1zm/hVWAP/Y2QT+DC/y/AACAP3Qjjz8AoF64qn8vP/G+gL8AAIA/7jCsPhAgrT7SR7A+sDa3PkuCwj4RYNc+r0r8Pq6OGj+U6V0/AACAPxgFMT7vTOa9bdawPuMnRL0oLFC/AAAAAMosrz499CE/AAAAADIBjj8AAAAABuMSPwQAgL8AAAAABmePPsF1kj5qBZs+6CipPmNcwD5CeuM+DXoKP3GPLz8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
|
65 |
},
|
66 |
"_last_episode_starts": {
|
67 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
71 |
"_episode_num": 0,
|
72 |
"use_sde": false,
|
73 |
"sde_sample_freq": -1,
|
74 |
+
"_current_progress_remaining": 0.0005760000000000209,
|
75 |
"ep_info_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwCZr1MNMYECUhpRSlIwBbJRNQAaMAXSUR0CMTQHt4RmLdX2UKGgGaAloD0MI/Ul87gSXWkCUhpRSlGgVTUAGaBZHQIxSx5s0pEx1fZQoaAZoCWgPQwgRct7/x9hTQJSGlFKUaBVNQAZoFkdAjFoUVJtix3V9lChoBmgJaA9DCKaBH9Ww4FVAlIaUUpRoFU1ABmgWR0CMXIa72+PBdX2UKGgGaAloD0MIECGunL3sWUCUhpRSlGgVTUAGaBZHQIxd/bdrO7h1fZQoaAZoCWgPQwgXRnpRuzFXQJSGlFKUaBVNQAZoFkdAjF4vSMLncXV9lChoBmgJaA9DCBCugEI9kldAlIaUUpRoFU1ABmgWR0CMZCz3yqdZdX2UKGgGaAloD0MIokRLHk+GUkCUhpRSlGgVTUAGaBZHQIxuxGKAJ9l1fZQoaAZoCWgPQwgfnbryWT5FwJSGlFKUaBVNvANoFkdAjHIizTnaFnV9lChoBmgJaA9DCFmmXyLez1xAlIaUUpRoFU1ABmgWR0CMdgyeI2wWdX2UKGgGaAloD0MI3J+Lhox3QcCUhpRSlGgVTTgEaBZHQIytJuQ6p5x1fZQoaAZoCWgPQwjEJced0v5bQJSGlFKUaBVNQAZoFkdAjLPpmEoOQXV9lChoBmgJaA9DCLXeb7TjiVtAlIaUUpRoFU1ABmgWR0CMvMewLVnVdX2UKGgGaAloD0MIptJPOLtEW0CUhpRSlGgVTUAGaBZHQIy9jEit7rt1fZQoaAZoCWgPQwhDG4ANiL1aQJSGlFKUaBVNQAZoFkdAjMPC1iONpHV9lChoBmgJaA9DCCE82jhi+UfAlIaUUpRoFU19BGgWR0CMyu1G9YfXdX2UKGgGaAloD0MIH4SAfAl1HkCUhpRSlGgVTSsGaBZHQIzQYTwlSjx1fZQoaAZoCWgPQwg+ldOekj5eQJSGlFKUaBVNQAZoFkdAjNNtQsPJ73V9lChoBmgJaA9DCLZHb7iPCFZAlIaUUpRoFU1ABmgWR0CM2PKPn0TUdX2UKGgGaAloD0MILJs5JLUIK8CUhpRSlGgVTaAEaBZHQI0HVyHVPN51fZQoaAZoCWgPQwirWWd8X8RcQJSGlFKUaBVNQAZoFkdAjQfY8U21lXV9lChoBmgJaA9DCG+fVWZK3l5AlIaUUpRoFU1ABmgWR0CNCjUb1h9cdX2UKGgGaAloD0MIeV2/YDd6UsCUhpRSlGgVTTYCaBZHQI0LD9uP3i91fZQoaAZoCWgPQwhcHmtGBjlbQJSGlFKUaBVNQAZoFkdAjQurUsnRcHV9lChoBmgJaA9DCMeDLXb7vELAlIaUUpRoFU1tA2gWR0CNDQ/vfCQ+dX2UKGgGaAloD0MIGOqwwi0rRsCUhpRSlGgVTRIDaBZHQI0Qau2Zy+91fZQoaAZoCWgPQwiOdAZGXk5YQJSGlFKUaBVNQAZoFkdAjRFhRqGlAXV9lChoBmgJaA9DCKBwdmuZtl5AlIaUUpRoFU1ABmgWR0CNG1ocJdB0dX2UKGgGaAloD0MInE8dq5T8W0CUhpRSlGgVTUAGaBZHQI0ihO32EkB1fZQoaAZoCWgPQwg8+IkD6GBbQJSGlFKUaBVNQAZoFkdAjS+qQA+6iHV9lChoBmgJaA9DCDP7PEZ5MknAlIaUUpRoFU1WA2gWR0CNMXQu27WedX2UKGgGaAloD0MIPZzAdFoaWsCUhpRSlGgVS3RoFkdAjTgelsP8RHV9lChoBmgJaA9DCP5fdeRIgVxAlIaUUpRoFU1ABmgWR0COCTKHO8kEdX2UKGgGaAloD0MIxty1hHw3XUCUhpRSlGgVTUAGaBZHQI4Wzbi6xxF1fZQoaAZoCWgPQwjNdK+T+no2wJSGlFKUaBVN1wRoFkdAjhgEzfrKNnV9lChoBmgJaA9DCE3YfjLGTV5AlIaUUpRoFU1ABmgWR0COHMvFm4AkdX2UKGgGaAloD0MI5L7VOnHsWECUhpRSlGgVTUAGaBZHQI4gJUvPC2t1fZQoaAZoCWgPQwj8q8d9q2dGwJSGlFKUaBVNAgRoFkdAjidP114gR3V9lChoBmgJaA9DCBLeHoSAaVnAlIaUUpRoFU0XAWgWR0COKFyPMjeLdX2UKGgGaAloD0MI9iUbD7apXkCUhpRSlGgVTUAGaBZHQI4sR0MgEEF1fZQoaAZoCWgPQwi8zRsnhY1dQJSGlFKUaBVNQAZoFkdAji8QkPczqXV9lChoBmgJaA9DCCXP9X04RGBAlIaUUpRoFU1ABmgWR0COL9RWtEG8dX2UKGgGaAloD0MIAP2+f/PkWUCUhpRSlGgVTUAGaBZHQI4wcFt8/lh1fZQoaAZoCWgPQwgmj6flB8VYQJSGlFKUaBVNQAZoFkdAjjHVLzwtrnV9lChoBmgJaA9DCEAziA/sOFxAlIaUUpRoFU1ABmgWR0CONV5HmRvFdX2UKGgGaAloD0MIlZ9U+3TUXECUhpRSlGgVTUAGaBZHQI42aubI91V1fZQoaAZoCWgPQwjY9Qt2wxVaQJSGlFKUaBVNQAZoFkdAjkExh2GIsXV9lChoBmgJaA9DCDelvFZCYVtAlIaUUpRoFU1ABmgWR0COfaenQ6ZIdX2UKGgGaAloD0MIVIuIYvJaUcCUhpRSlGgVTWcCaBZHQI6BYc94eLh1fZQoaAZoCWgPQwhNwK+RJHJaQJSGlFKUaBVNQAZoFkdAjoWWk8A7xXV9lChoBmgJaA9DCN8zEqERjV1AlIaUUpRoFU1ABmgWR0COjPjghr31dX2UKGgGaAloD0MImdamsb29WUCUhpRSlGgVTUAGaBZHQI6aKe05U991fZQoaAZoCWgPQwjH155ZElNfQJSGlFKUaBVNQAZoFkdAjqAAKneiz3V9lChoBmgJaA9DCBwo8E4+EVpAlIaUUpRoFU1ABmgWR0COoyRTS9dvdX2UKGgGaAloD0MISrN5HAZmUMCUhpRSlGgVTdUCaBZHQI7Sco+fRNR1fZQoaAZoCWgPQwhc598u+05eQJSGlFKUaBVNQAZoFkdAjtLeAuqWC3V9lChoBmgJaA9DCLMngc05RFdAlIaUUpRoFU1ABmgWR0CO0/0I1LrYdX2UKGgGaAloD0MIMZi/QuZSWkCUhpRSlGgVTUAGaBZHQI7YFv60pmV1fZQoaAZoCWgPQwidTNwqiL9aQJSGlFKUaBVNQAZoFkdAjtrcBuGbkXV9lChoBmgJaA9DCMQlx53SVVpAlIaUUpRoFU1ABmgWR0CO26XpnpSrdX2UKGgGaAloD0MIceKrHcV+WECUhpRSlGgVTUAGaBZHQI7cRbwBo251fZQoaAZoCWgPQwgvpS4Zx9BTQJSGlFKUaBVNQAZoFkdAjt2uXE61cHV9lChoBmgJaA9DCD/iV6zhQ1tAlIaUUpRoFU1ABmgWR0CO4hLFGXoldX2UKGgGaAloD0MIHqm+84tpV8CUhpRSlGgVS/VoFkdAjuiSNwR5DHV9lChoBmgJaA9DCN3OvvIgk1lAlIaUUpRoFU1ABmgWR0CO7AKrq+rVdX2UKGgGaAloD0MI5Nak2xLWXkCUhpRSlGgVTUAGaBZHQI7/CJwbVBl1fZQoaAZoCWgPQwg2PL1SlhdcQJSGlFKUaBVNQAZoFkdAj4UIOhCdBnV9lChoBmgJaA9DCJNvtrkxMltAlIaUUpRoFU1ABmgWR0CPjEIgNgBtdX2UKGgGaAloD0MIntMs0O5QW0CUhpRSlGgVTUAGaBZHQI+ZZKg7HQ11fZQoaAZoCWgPQwirdeJyvNpZQJSGlFKUaBVNQAZoFkdAj5697v5P/XV9lChoBmgJaA9DCF2G/3QDWl1AlIaUUpRoFU1ABmgWR0CPocyM1jy4dX2UKGgGaAloD0MI+tNGdTrQ+7+UhpRSlGgVTaEFaBZHQI+lE0gr6Lx1fZQoaAZoCWgPQwh+5UF6imQ+wJSGlFKUaBVNkARoFkdAj6Y96Tnq3XV9lChoBmgJaA9DCKhvmdNlsl1AlIaUUpRoFU1ABmgWR0CPqEiUPhAGdX2UKGgGaAloD0MIPZtVn6vYXECUhpRSlGgVTUAGaBZHQI+osWqLjxV1fZQoaAZoCWgPQwigpSvYRqtfQJSGlFKUaBVNQAZoFkdAj6nPY4ACGXV9lChoBmgJaA9DCFvvN9pxdltAlIaUUpRoFU1ABmgWR0CPsS4qgAZLdX2UKGgGaAloD0MIJ09ZTdc8XECUhpRSlGgVTUAGaBZHQI+xzqD9Oyp1fZQoaAZoCWgPQwjpD808uY9dQJSGlFKUaBVNQAZoFkdAj7M4G+sYEXV9lChoBmgJaA9DCOHs1jIZj1dAlIaUUpRoFU1ABmgWR0CPt4YLLIPtdX2UKGgGaAloD0MIW1zjM9lhW0CUhpRSlGgVTUAGaBZHQI/pU8DB/I91fZQoaAZoCWgPQwgG1nH8UK9QwJSGlFKUaBVN4QJoFkdAj+m7MgU1ynV9lChoBmgJaA9DCHkB9tGpQlHAlIaUUpRoFU2WAmgWR0CP9PqqwQlKdX2UKGgGaAloD0MI5Euo4PDdWECUhpRSlGgVTUAGaBZHQI/8RaA4GUx1fZQoaAZoCWgPQwiHxahr7XFdQJSGlFKUaBVNQAZoFkdAkAIT/yXlbXV9lChoBmgJaA9DCMaIRKFlzl5AlIaUUpRoFU1ABmgWR0CQBbvovBacdX2UKGgGaAloD0MIAkUsYtjJU8CUhpRSlGgVTWMBaBZHQJAHxepn6Ed1fZQoaAZoCWgPQwjzVl2HaopgQJSGlFKUaBVNQAZoFkdAkCMGCEpRXXV9lChoBmgJaA9DCKnAyTZwG11AlIaUUpRoFU1ABmgWR0CQJIX9R77bdX2UKGgGaAloD0MI0xIro5HEV0CUhpRSlGgVTUAGaBZHQJAmJozvZyx1fZQoaAZoCWgPQwjnU8cqpbxXQJSGlFKUaBVNQAZoFkdAkCbFVLi++XV9lChoBmgJaA9DCOSeru5YXl5AlIaUUpRoFU1ABmgWR0CQJ9Wom5UcdX2UKGgGaAloD0MIRwA3ixfhXECUhpRSlGgVTUAGaBZHQJAoiwbEP2B1fZQoaAZoCWgPQwjVBieiXz1bQJSGlFKUaBVNQAZoFkdAkCxC0rsjV3V9lChoBmgJaA9DCC4e3nNgU11AlIaUUpRoFU1ABmgWR0CQLJKZUkv9dX2UKGgGaAloD0MIrRbYYyI4WkCUhpRSlGgVTUAGaBZHQJAtR+ocaOx1fZQoaAZoCWgPQwhB9KRMaqRXQJSGlFKUaBVNQAZoFkdAkC9swL3K0XV9lChoBmgJaA9DCMHmHDwTmlxAlIaUUpRoFU1ABmgWR0CQNDhRqGlAdX2UKGgGaAloD0MIR8uBHupKYECUhpRSlGgVTUAGaBZHQJA0akFfReF1fZQoaAZoCWgPQwjlYaHWNN5XQJSGlFKUaBVNQAZoFkdAkDn6hpQDWHVlLg=="
|
78 |
},
|
79 |
"ep_success_buffer": {
|
80 |
":type:": "<class 'collections.deque'>",
|
81 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
},
|
83 |
+
"_n_updates": 244,
|
84 |
"n_steps": 1024,
|
85 |
"gamma": 0.999,
|
86 |
"gae_lambda": 0.98,
|
ppo-BipedalWalker-v3/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 101783
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8bb4dfb5f04a8f1b716160455e8ae4527fee64ff446f633ab1e9c0cdd498a61
|
3 |
size 101783
|
ppo-BipedalWalker-v3/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 51710
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35a3dab66459595fd710621ba28458f7aa3a7ca3ea81490ce6e204c213ecbfd9
|
3 |
size 51710
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c9d7e7801aed71ef36e32965d1ba23167ed3f9d7a3f5d734b9e72080b65e5c3
|
3 |
+
size 450407
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 171.53047218113025, "std_reward": 21.427889891090487, "is_deterministic": true, "n_eval_episodes": 200, "eval_datetime": "2022-05-20T01:58:14.580976"}
|