Built with Axolotl

ckpts/llama2-7b-viettel_v3.2_2epoch

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3727

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 24
  • total_eval_batch_size: 6
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.4378 0.12 200 0.4331
0.4266 0.24 400 0.4187
0.4199 0.37 600 0.4086
0.4024 0.49 800 0.4016
0.4003 0.61 1000 0.3966
0.3849 0.73 1200 0.3914
0.3814 0.86 1400 0.3865
0.3825 0.98 1600 0.3831
0.3557 1.1 1800 0.3812
0.3531 1.22 2000 0.3789
0.3444 1.35 2200 0.3771
0.3411 1.47 2400 0.3752
0.35 1.59 2600 0.3738
0.3586 1.71 2800 0.3733
0.349 1.84 3000 0.3728
0.357 1.96 3200 0.3727

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.14.0
Downloads last month
7
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for minhbui/viettel_v3.2_adapter

Quantized
(40)
this model