metadata
language: vi
tags:
- vi
- vietnamese
- gpt2
- text-generation
- lm
- nlp
datasets:
- wikilinguage
widget:
- text: Không phải tất cả các nguyên liệu lành mạnh đều đắt đỏ.
pipeline_tag: text-generation
inference:
parameters:
max_length: 120
do_sample: true
temperature: 0.8
GPT-2
GPT-2, a language pretrained model with a causal language modeling (CLM) goal, is a transformer-based language model. This model was pre-trained and used to generate text on the Vietnamese Wikilingua dataset.
How to use the model
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained('minhtoan/vietnamese-gpt2-finetune')
model = GPT2LMHeadModel.from_pretrained('minhtoan/vietnamese-gpt2-finetune')
text = "Không phải tất cả các nguyên liệu lành mạnh đều đắt đỏ."
input_ids = tokenizer.encode(text, return_tensors='pt')
max_length = 100
sample_outputs = model.generate(input_ids,pad_token_id=tokenizer.eos_token_id,
do_sample=True,
max_length=max_length,
min_length=max_length,
num_return_sequences=3)
for i, sample_output in enumerate(sample_outputs):
print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist())))
print('\n---')
Author
Phan Minh Toan