mini1013's picture
Push model using huggingface_hub.
65e08b9 verified
metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
  - accuracy
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: >-
      에뛰드하우스 실키 퍼프 화장솜 80개입 × 1개 (#M)쿠팡 홈>뷰티>뷰티소품>클렌징소품>화장솜/면봉 Coupang > 뷰티 >
      뷰티소품 > 화장솜/면봉
  - text: >-
      트위저맨 슬랜트 트위저 족집게 로즈골드 × 1개 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 퍼프 LotteOn >
      뷰티 > 뷰티기기/소품 > 메이크업소품 > 퍼프
  - text: >-
      타투스티커 바디형 문신스티커 헤나 레터링 흉터커버 쇄골 반팔 J type 타투스티커 30종세트 LotteOn > 뷰티 >
      뷰티기기/소품 > 메이크업소품 > 헤나/타투 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 헤나/타투
  - text: >-
      더툴랩 215 피니쉬 컨실러 파운데이션 브러쉬  LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬 LotteOn >
      뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬
  - text: >-
      에뛰드하우스 실키 퍼프 화장솜 80개입 × 1개 (#M)쿠팡 홈>뷰티>뷰티소품>클렌징소품>화장솜/면봉 Coupang > 뷰티 >
      뷰티소품 > 화장솜/면봉
inference: true
model-index:
  - name: SetFit with mini1013/master_domain
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.8526100307062436
            name: Accuracy

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
7
  • '모델링팩 제조 셀프 피부관리 용품 세트 스파츌러 할로윈분장 미용기구 분홍색 (#M)쿠팡 홈>뷰티>메이크업>베이스 메이크업>베이스 메이크업 세트 Coupang > 뷰티 > 메이크업 > 베이스 메이크업 > 베이스 메이크업 세트'
  • '프린시아 공용기 로션통 30g 옵션없음 ssg > 뷰티 > 미용기기/소품 > 거울/용기/기타소품 ssg > 뷰티 > 미용기기/소품 > 아이소품 > 인조속눈썹'
  • '[텐바이텐] 입생로랑 유광 레드 프레스티지 파우치 옵션선택_옵션선택 (#M)쿠팡 홈>뷰티>남성화장품>남성 쉐이빙 케어>애프터쉐이브 스킨/로션/크림 Coupang > 뷰티 > 남성화장품 > 남성 쉐이빙 케어 > 애프터쉐이브 스킨/로션/크림'
3
  • '토니모리 아이래쉬 컬러_동수원점_동수원점 아이래쉬 컬러 (#M)SSG.COM/메이크업/아이메이크업/아이섀도우/글리터/팔레트 ssg > 뷰티 > 메이크업 > 아이메이크업'
  • '아리따움 아이돌 래쉬 프리미엄 9호리얼핏 (#M)홈>화장품/미용>뷰티소품>아이소품>속눈썹/속눈썹펌제 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제'
  • '트위저맨 쁘띠 트위즈 족집게 세트 실버 × 1세트 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 화장품파우치/정리함 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 화장품파우치/정리함'
6
  • '토니모리 뿌리 볼륨 헤어 집게 (#M)쿠팡 홈>뷰티>헤어>헤어스타일링>헤어왁스 Coupang > 뷰티 > 로드샵 > 헤어 > 헤어스타일링 > 헤어왁스'
  • '갤리포니아 미니 갤리포니아 미니 ssg > 뷰티 > 메이크업 > 치크메이크업;ssg > 뷰티 > 메이크업 > 립메이크업 > 립밤 ssg > 뷰티 > 메이크업 > 립메이크업'
  • '보다나 두피케어 샴푸 브러쉬 보다나 두피케어 샴푸 브러쉬 홈>미용소품>헤어소품>헤어브러시;(#M)홈>헤어케어>헤어브러쉬>두피용 OLIVEYOUNG > 미용소품 > 헤어/바디 > 헤어브러시'
0
  • '천연 자초 립밤 만들기 키트 diy 향 선택(8개) 사과+에탄올20ml (#M)홈>비누&립밤&세제 만들기>만들기키트 Naverstore > 화장품/미용 > 색조메이크업 > 립케어'
5
  • '헤라 블랙 쿠션 제로 비티 핏 퍼프 2입 파워풀한 핏팅력 균일한 밀착 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 퍼프 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 퍼프'
  • '[티타늄] 더마 MTS 롤러 헤어 두피 540 0.25mm 0.5mm 니들 앰플 티타늄_고급형_0.75mm 홈>화장품/미용>뷰티소품>페이스소품>마사지도구;홈>전체상품;(#M)홈>MTS 도구 Naverstore > 화장품/미용 > 뷰티소품 > 페이스소품 > 마사지도구'
  • '헤라 블랙 쿠션 퍼프 x 10개/설화수 쿠션 퍼프 x 10개 헤라블랙쿠션퍼프 x 5개 (#M)홈>화장품/미용>뷰티소품>페이스소품>퍼프 Naverstore > 화장품/미용 > 뷰티소품 > 페이스소품 > 퍼프'
1
  • '[단품구매] 해피림 아이블랜딩 세트 5종 (10%할인) 235 펜슬 브러쉬 (#M)화장품/미용>뷰티소품>메이크업브러시>아이브러시 Naverstore > 화장품/미용 > 뷰티소품 > 메이크업브러시 > 아이브러시'
  • '[안씨브러쉬] 여행용 블러셔, 파우더 브러쉬 - VELVET04 (맑은발색) 홈>라인별>(new) VELVET (Premium);(#M)홈>라인별>VELVET (Premium) Naverstore > 화장품/미용 > 뷰티소품 > 메이크업브러시 > 페이스브러시'
  • '[안씨브러쉬] 스몰 아이섀도, 블렌딩 아이섀도 브러쉬 - Eve316 (#M)홈>용도별>아이메이크업>스몰 - 메인컬러, 중간컬러 Naverstore > 화장품/미용 > 뷰티소품 > 메이크업브러시 > 아이브러시'
2
  • '바버샵 커트보 미용실 가운 컷트보 드라이보 파마보 염색보 넥셔터 03. 바버샵 그린 스트라이프 홈>전체상품;(#M)홈>커트보,앞치마 Naverstore > 화장품/미용 > 뷰티소품 > 헤어소품 > 기타헤어소품'
  • '_ [!BEST_쿠_팡_픽!] _ 롱바디 브러시 각도 조절 가능 등브러쉬 목욕 용품샤워타올목욕용품 _ 5F9AD0 _ 00000EA_goldspo_on mall ★수저픽★ 베이지_JW (#M)쿠팡 홈>생활용품>헤어/바디/세안>샤워/입욕용품>입욕제>바스밤 Coupang > 뷰티 > 바디 > 샤워/입욕용품 > 입욕제'
  • '롱바디 브러시 각도 조절 가능 등브러쉬 목욕 용품 SQ+6242EA 밀키 블루 (#M)쿠팡 홈>생활용품>헤어/바디/세안>샤워/입욕용품>입욕제>바스밤 Coupang > 뷰티 > 바디 > 샤워/입욕용품 > 입욕제'
4
  • '타투바늘 DiRK 더크 카트리지 니들 라이너, 매그넘, 쉐더 반영구 라운드 매그넘_1211 (#M)홈>화장품/미용>뷰티소품>타투 Naverstore > 화장품/미용 > 뷰티소품 > 타투'
  • '[스킨알엑스] [타투미] 브레이슬릿 Chandelier Bracelet LotteOn > 뷰티 > 바디케어 > 바디케어세트 LotteOn > 뷰티 > 바디케어 > 바디케어세트'
  • '5초눈썹타투스티커5초11쌍 눈썹문신스티커 눈썹타투 눈썹 E14 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬'

Evaluation

Metrics

Label Accuracy
all 0.8526

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt_top6_test")
# Run inference
preds = model("에뛰드하우스 실키 퍼프 화장솜 80개입 × 1개 (#M)쿠팡 홈>뷰티>뷰티소품>클렌징소품>화장솜/면봉 Coupang > 뷰티 > 뷰티소품 > 화장솜/면봉")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 11 20.66 66
Label Training Sample Count
0 1
1 50
2 50
3 50
4 50
5 50
6 49
7 50

Training Hyperparameters

  • batch_size: (64, 64)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 100
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0018 1 0.4049 -
0.0914 50 0.4426 -
0.1828 100 0.4367 -
0.2742 150 0.4123 -
0.3656 200 0.3927 -
0.4570 250 0.3631 -
0.5484 300 0.3095 -
0.6399 350 0.2743 -
0.7313 400 0.2444 -
0.8227 450 0.2342 -
0.9141 500 0.2188 -
1.0055 550 0.2089 -
1.0969 600 0.1942 -
1.1883 650 0.1751 -
1.2797 700 0.1564 -
1.3711 750 0.1525 -
1.4625 800 0.1342 -
1.5539 850 0.1252 -
1.6453 900 0.1124 -
1.7367 950 0.1022 -
1.8282 1000 0.0877 -
1.9196 1050 0.0611 -
2.0110 1100 0.0447 -
2.1024 1150 0.0353 -
2.1938 1200 0.0305 -
2.2852 1250 0.0321 -
2.3766 1300 0.0299 -
2.4680 1350 0.0292 -
2.5594 1400 0.0307 -
2.6508 1450 0.0328 -
2.7422 1500 0.0277 -
2.8336 1550 0.0226 -
2.9250 1600 0.0103 -
3.0165 1650 0.007 -
3.1079 1700 0.0024 -
3.1993 1750 0.0012 -
3.2907 1800 0.0012 -
3.3821 1850 0.0007 -
3.4735 1900 0.0007 -
3.5649 1950 0.0003 -
3.6563 2000 0.0006 -
3.7477 2050 0.0009 -
3.8391 2100 0.0005 -
3.9305 2150 0.0005 -
4.0219 2200 0.001 -
4.1133 2250 0.0044 -
4.2048 2300 0.004 -
4.2962 2350 0.0042 -
4.3876 2400 0.0053 -
4.4790 2450 0.0061 -
4.5704 2500 0.008 -
4.6618 2550 0.0057 -
4.7532 2600 0.0063 -
4.8446 2650 0.0064 -
4.9360 2700 0.0056 -
5.0274 2750 0.0033 -
5.1188 2800 0.0017 -
5.2102 2850 0.0018 -
5.3016 2900 0.0012 -
5.3931 2950 0.0007 -
5.4845 3000 0.0026 -
5.5759 3050 0.0038 -
5.6673 3100 0.0019 -
5.7587 3150 0.0009 -
5.8501 3200 0.0005 -
5.9415 3250 0.0002 -
6.0329 3300 0.0002 -
6.1243 3350 0.001 -
6.2157 3400 0.0003 -
6.3071 3450 0.001 -
6.3985 3500 0.0003 -
6.4899 3550 0.0008 -
6.5814 3600 0.0 -
6.6728 3650 0.0006 -
6.7642 3700 0.0005 -
6.8556 3750 0.0003 -
6.9470 3800 0.0004 -
7.0384 3850 0.002 -
7.1298 3900 0.0012 -
7.2212 3950 0.0005 -
7.3126 4000 0.0025 -
7.4040 4050 0.0029 -
7.4954 4100 0.0017 -
7.5868 4150 0.0006 -
7.6782 4200 0.0002 -
7.7697 4250 0.0008 -
7.8611 4300 0.0003 -
7.9525 4350 0.0005 -
8.0439 4400 0.0003 -
8.1353 4450 0.0005 -
8.2267 4500 0.0012 -
8.3181 4550 0.0003 -
8.4095 4600 0.0003 -
8.5009 4650 0.0008 -
8.5923 4700 0.001 -
8.6837 4750 0.0005 -
8.7751 4800 0.0003 -
8.8665 4850 0.0005 -
8.9580 4900 0.0002 -
9.0494 4950 0.0003 -
9.1408 5000 0.0004 -
9.2322 5050 0.0006 -
9.3236 5100 0.0003 -
9.4150 5150 0.0003 -
9.5064 5200 0.0002 -
9.5978 5250 0.0006 -
9.6892 5300 0.0008 -
9.7806 5350 0.0006 -
9.8720 5400 0.0003 -
9.9634 5450 0.0005 -
10.0548 5500 0.0005 -
10.1463 5550 0.0003 -
10.2377 5600 0.0005 -
10.3291 5650 0.0005 -
10.4205 5700 0.0005 -
10.5119 5750 0.0005 -
10.6033 5800 0.0006 -
10.6947 5850 0.0003 -
10.7861 5900 0.0002 -
10.8775 5950 0.0008 -
10.9689 6000 0.0005 -
11.0603 6050 0.0002 -
11.1517 6100 0.0003 -
11.2431 6150 0.0009 -
11.3346 6200 0.0006 -
11.4260 6250 0.0003 -
11.5174 6300 0.0005 -
11.6088 6350 0.0002 -
11.7002 6400 0.0005 -
11.7916 6450 0.0005 -
11.8830 6500 0.0 -
11.9744 6550 0.0008 -
12.0658 6600 0.0008 -
12.1572 6650 0.0005 -
12.2486 6700 0.0003 -
12.3400 6750 0.0002 -
12.4314 6800 0.0006 -
12.5229 6850 0.0003 -
12.6143 6900 0.0005 -
12.7057 6950 0.0029 -
12.7971 7000 0.0013 -
12.8885 7050 0.0038 -
12.9799 7100 0.0029 -
13.0713 7150 0.0011 -
13.1627 7200 0.0009 -
13.2541 7250 0.0004 -
13.3455 7300 0.0002 -
13.4369 7350 0.0018 -
13.5283 7400 0.0044 -
13.6197 7450 0.0007 -
13.7112 7500 0.0005 -
13.8026 7550 0.0005 -
13.8940 7600 0.0006 -
13.9854 7650 0.0003 -
14.0768 7700 0.0005 -
14.1682 7750 0.0003 -
14.2596 7800 0.0005 -
14.3510 7850 0.0003 -
14.4424 7900 0.0003 -
14.5338 7950 0.0005 -
14.6252 8000 0.0009 -
14.7166 8050 0.0 -
14.8080 8100 0.0005 -
14.8995 8150 0.0005 -
14.9909 8200 0.0008 -
15.0823 8250 0.0003 -
15.1737 8300 0.0003 -
15.2651 8350 0.0009 -
15.3565 8400 0.0003 -
15.4479 8450 0.0003 -
15.5393 8500 0.0002 -
15.6307 8550 0.0003 -
15.7221 8600 0.0006 -
15.8135 8650 0.0006 -
15.9049 8700 0.0006 -
15.9963 8750 0.0003 -
16.0878 8800 0.0008 -
16.1792 8850 0.0003 -
16.2706 8900 0.0002 -
16.3620 8950 0.0003 -
16.4534 9000 0.0008 -
16.5448 9050 0.0002 -
16.6362 9100 0.0002 -
16.7276 9150 0.0009 -
16.8190 9200 0.0008 -
16.9104 9250 0.0003 -
17.0018 9300 0.0002 -
17.0932 9350 0.0005 -
17.1846 9400 0.0006 -
17.2761 9450 0.0005 -
17.3675 9500 0.0008 -
17.4589 9550 0.0003 -
17.5503 9600 0.0005 -
17.6417 9650 0.0006 -
17.7331 9700 0.0006 -
17.8245 9750 0.0005 -
17.9159 9800 0.0002 -
18.0073 9850 0.0002 -
18.0987 9900 0.0003 -
18.1901 9950 0.0036 -
18.2815 10000 0.0007 -
18.3729 10050 0.0008 -
18.4644 10100 0.0006 -
18.5558 10150 0.0005 -
18.6472 10200 0.0003 -
18.7386 10250 0.0006 -
18.8300 10300 0.0006 -
18.9214 10350 0.0003 -
19.0128 10400 0.0005 -
19.1042 10450 0.0003 -
19.1956 10500 0.0005 -
19.2870 10550 0.0006 -
19.3784 10600 0.0003 -
19.4698 10650 0.0003 -
19.5612 10700 0.0002 -
19.6527 10750 0.0008 -
19.7441 10800 0.0006 -
19.8355 10850 0.0005 -
19.9269 10900 0.0003 -
20.0183 10950 0.0005 -
20.1097 11000 0.0002 -
20.2011 11050 0.0002 -
20.2925 11100 0.0006 -
20.3839 11150 0.0006 -
20.4753 11200 0.0008 -
20.5667 11250 0.0003 -
20.6581 11300 0.0005 -
20.7495 11350 0.0002 -
20.8410 11400 0.0003 -
20.9324 11450 0.0005 -
21.0238 11500 0.0006 -
21.1152 11550 0.0002 -
21.2066 11600 0.0003 -
21.2980 11650 0.0008 -
21.3894 11700 0.0008 -
21.4808 11750 0.0002 -
21.5722 11800 0.0005 -
21.6636 11850 0.0005 -
21.7550 11900 0.0008 -
21.8464 11950 0.0005 -
21.9378 12000 0.0 -
22.0293 12050 0.0003 -
22.1207 12100 0.0002 -
22.2121 12150 0.0003 -
22.3035 12200 0.0005 -
22.3949 12250 0.0003 -
22.4863 12300 0.0005 -
22.5777 12350 0.0008 -
22.6691 12400 0.0002 -
22.7605 12450 0.0002 -
22.8519 12500 0.0006 -
22.9433 12550 0.0009 -
23.0347 12600 0.0006 -
23.1261 12650 0.0006 -
23.2176 12700 0.0008 -
23.3090 12750 0.0003 -
23.4004 12800 0.0005 -
23.4918 12850 0.0003 -
23.5832 12900 0.0005 -
23.6746 12950 0.0006 -
23.7660 13000 0.0005 -
23.8574 13050 0.0003 -
23.9488 13100 0.0002 -
24.0402 13150 0.0002 -
24.1316 13200 0.0005 -
24.2230 13250 0.0008 -
24.3144 13300 0.0003 -
24.4059 13350 0.0006 -
24.4973 13400 0.0008 -
24.5887 13450 0.0003 -
24.6801 13500 0.0002 -
24.7715 13550 0.0002 -
24.8629 13600 0.0005 -
24.9543 13650 0.0005 -
25.0457 13700 0.0006 -
25.1371 13750 0.0003 -
25.2285 13800 0.0005 -
25.3199 13850 0.0 -
25.4113 13900 0.0005 -
25.5027 13950 0.0009 -
25.5941 14000 0.0003 -
25.6856 14050 0.0003 -
25.7770 14100 0.0003 -
25.8684 14150 0.0005 -
25.9598 14200 0.0003 -
26.0512 14250 0.0011 -
26.1426 14300 0.0 -
26.2340 14350 0.0005 -
26.3254 14400 0.0014 -
26.4168 14450 0.0002 -
26.5082 14500 0.0003 -
26.5996 14550 0.0003 -
26.6910 14600 0.0008 -
26.7824 14650 0.0003 -
26.8739 14700 0.0 -
26.9653 14750 0.0003 -
27.0567 14800 0.0003 -
27.1481 14850 0.0008 -
27.2395 14900 0.0005 -
27.3309 14950 0.0003 -
27.4223 15000 0.0002 -
27.5137 15050 0.0006 -
27.6051 15100 0.0 -
27.6965 15150 0.0005 -
27.7879 15200 0.0003 -
27.8793 15250 0.0003 -
27.9707 15300 0.0012 -
28.0622 15350 0.0003 -
28.1536 15400 0.0006 -
28.2450 15450 0.0005 -
28.3364 15500 0.0003 -
28.4278 15550 0.0002 -
28.5192 15600 0.0011 -
28.6106 15650 0.0003 -
28.7020 15700 0.0002 -
28.7934 15750 0.0005 -
28.8848 15800 0.0005 -
28.9762 15850 0.0006 -
29.0676 15900 0.0 -
29.1590 15950 0.0 -
29.2505 16000 0.0002 -
29.3419 16050 0.0003 -
29.4333 16100 0.0008 -
29.5247 16150 0.0006 -
29.6161 16200 0.0005 -
29.7075 16250 0.0005 -
29.7989 16300 0.0008 -
29.8903 16350 0.0006 -
29.9817 16400 0.0005 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}