metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 필립스 퍼펙트케어 파워라이프 스팀 다리미 GC3929/68 실크부터 청바지까지 온도 조절 NO! 타지 않는 다림질 웰컴마켓2
- text: 보랄 UV 침구 청소기 침대 소파 진공 BR-V603BC 홈니즈 보랄 UV 침구 진공청소기 더웰
- text: NEW 필립스160 다이나글라이드 열판 건식 전기다리미 제이엘코
- text: DG-TOK 넥밴드 타입 디지털 생활무전기 나노Q3/ nano-Q3 블랙 컴피시스템 (comfy system)
- text: ALLNEW29000 파워메이드_그레이(GRAY) 나성민
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.7946213453148402
name: Metric
SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 18 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1 |
|
4 |
|
16 |
|
14 |
|
11 |
|
3 |
|
13 |
|
15 |
|
6 |
|
2 |
|
9 |
|
5 |
|
12 |
|
7 |
|
0 |
|
17 |
|
8 |
|
10 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.7946 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el11")
# Run inference
preds = model("ALLNEW29000 파워메이드_그레이(GRAY) 나성민")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 9.3700 | 32 |
Label | Training Sample Count |
---|---|
0 | 50 |
1 | 50 |
2 | 50 |
3 | 50 |
4 | 50 |
5 | 50 |
6 | 50 |
7 | 50 |
8 | 5 |
9 | 50 |
10 | 3 |
11 | 50 |
12 | 50 |
13 | 50 |
14 | 50 |
15 | 50 |
16 | 50 |
17 | 50 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0079 | 1 | 0.4968 | - |
0.3937 | 50 | 0.3206 | - |
0.7874 | 100 | 0.1406 | - |
1.1811 | 150 | 0.0735 | - |
1.5748 | 200 | 0.0518 | - |
1.9685 | 250 | 0.0242 | - |
2.3622 | 300 | 0.006 | - |
2.7559 | 350 | 0.0102 | - |
3.1496 | 400 | 0.0088 | - |
3.5433 | 450 | 0.0082 | - |
3.9370 | 500 | 0.0062 | - |
4.3307 | 550 | 0.012 | - |
4.7244 | 600 | 0.0021 | - |
5.1181 | 650 | 0.002 | - |
5.5118 | 700 | 0.0049 | - |
5.9055 | 750 | 0.0043 | - |
6.2992 | 800 | 0.006 | - |
6.6929 | 850 | 0.0002 | - |
7.0866 | 900 | 0.0004 | - |
7.4803 | 950 | 0.0002 | - |
7.8740 | 1000 | 0.0002 | - |
8.2677 | 1050 | 0.0002 | - |
8.6614 | 1100 | 0.0001 | - |
9.0551 | 1150 | 0.0001 | - |
9.4488 | 1200 | 0.0002 | - |
9.8425 | 1250 | 0.0002 | - |
10.2362 | 1300 | 0.0001 | - |
10.6299 | 1350 | 0.0001 | - |
11.0236 | 1400 | 0.0001 | - |
11.4173 | 1450 | 0.0001 | - |
11.8110 | 1500 | 0.0001 | - |
12.2047 | 1550 | 0.0001 | - |
12.5984 | 1600 | 0.0001 | - |
12.9921 | 1650 | 0.0001 | - |
13.3858 | 1700 | 0.0001 | - |
13.7795 | 1750 | 0.0001 | - |
14.1732 | 1800 | 0.0001 | - |
14.5669 | 1850 | 0.0001 | - |
14.9606 | 1900 | 0.0001 | - |
15.3543 | 1950 | 0.0001 | - |
15.7480 | 2000 | 0.0001 | - |
16.1417 | 2050 | 0.0001 | - |
16.5354 | 2100 | 0.0001 | - |
16.9291 | 2150 | 0.0001 | - |
17.3228 | 2200 | 0.0001 | - |
17.7165 | 2250 | 0.0001 | - |
18.1102 | 2300 | 0.0001 | - |
18.5039 | 2350 | 0.0001 | - |
18.8976 | 2400 | 0.0001 | - |
19.2913 | 2450 | 0.0001 | - |
19.6850 | 2500 | 0.0001 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}