metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 비타그램 프리미엄 페이스&갈바닉 CX19-11 주식회사 제이제이몰
- text: 쥬베라 3파장 357개 LED 마스크 주식회사 바바라도로시
- text: 코털제거기 코털 귀털 눈썹 정리기 나비 NV151-ENT7 화이트 정리기 다듬기 관리기 깍기 (주) 윙스아이티
- text: 조아스 전기 이발기 JC-4773 홍운SnC
- text: 필립스 방수전기면도기 건습식 SkinIQ 7000 S7788/61 다크크롬 헤일로
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.7128640776699029
name: Metric
SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 18 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
10 |
|
13 |
|
11 |
|
8 |
|
3 |
|
5 |
|
12 |
|
16 |
|
4 |
|
17 |
|
6 |
|
15 |
|
0 |
|
14 |
|
2 |
|
1 |
|
7 |
|
9 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.7129 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el15")
# Run inference
preds = model("조아스 전기 이발기 JC-4773 홍운SnC")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 4 | 8.8868 | 24 |
Label | Training Sample Count |
---|---|
0 | 50 |
1 | 3 |
2 | 50 |
3 | 50 |
4 | 50 |
5 | 50 |
6 | 50 |
7 | 3 |
8 | 50 |
9 | 50 |
10 | 50 |
11 | 50 |
12 | 50 |
13 | 50 |
14 | 50 |
15 | 50 |
16 | 39 |
17 | 50 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.008 | 1 | 0.4972 | - |
0.4 | 50 | 0.3579 | - |
0.8 | 100 | 0.2105 | - |
1.2 | 150 | 0.0948 | - |
1.6 | 200 | 0.0803 | - |
2.0 | 250 | 0.0848 | - |
2.4 | 300 | 0.0253 | - |
2.8 | 350 | 0.0278 | - |
3.2 | 400 | 0.023 | - |
3.6 | 450 | 0.0113 | - |
4.0 | 500 | 0.0098 | - |
4.4 | 550 | 0.006 | - |
4.8 | 600 | 0.01 | - |
5.2 | 650 | 0.0044 | - |
5.6 | 700 | 0.0069 | - |
6.0 | 750 | 0.0117 | - |
6.4 | 800 | 0.004 | - |
6.8 | 850 | 0.0004 | - |
7.2 | 900 | 0.0023 | - |
7.6 | 950 | 0.0023 | - |
8.0 | 1000 | 0.0004 | - |
8.4 | 1050 | 0.0024 | - |
8.8 | 1100 | 0.0003 | - |
9.2 | 1150 | 0.001 | - |
9.6 | 1200 | 0.0003 | - |
10.0 | 1250 | 0.0004 | - |
10.4 | 1300 | 0.0002 | - |
10.8 | 1350 | 0.0003 | - |
11.2 | 1400 | 0.0028 | - |
11.6 | 1450 | 0.0002 | - |
12.0 | 1500 | 0.0002 | - |
12.4 | 1550 | 0.0002 | - |
12.8 | 1600 | 0.0002 | - |
13.2 | 1650 | 0.0002 | - |
13.6 | 1700 | 0.0002 | - |
14.0 | 1750 | 0.0001 | - |
14.4 | 1800 | 0.0002 | - |
14.8 | 1850 | 0.0002 | - |
15.2 | 1900 | 0.0012 | - |
15.6 | 1950 | 0.0001 | - |
16.0 | 2000 | 0.0003 | - |
16.4 | 2050 | 0.0001 | - |
16.8 | 2100 | 0.0001 | - |
17.2 | 2150 | 0.0001 | - |
17.6 | 2200 | 0.0005 | - |
18.0 | 2250 | 0.0001 | - |
18.4 | 2300 | 0.0005 | - |
18.8 | 2350 | 0.0001 | - |
19.2 | 2400 | 0.0008 | - |
19.6 | 2450 | 0.0001 | - |
20.0 | 2500 | 0.0001 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}