SetFit with klue/roberta-base

This is a SetFit model that can be used for Text Classification. This SetFit model uses klue/roberta-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

  • Model Type: SetFit
  • Sentence Transformer body: klue/roberta-base
  • Classification head: a LogisticRegression instance
  • Maximum Sequence Length: 512 tokens
  • Number of Classes: 5 classes

Model Sources

Model Labels

Label Examples
5
  • '[에뛰드] 마이뷰티툴 속눈썹 1ea 5호 홈>화장소품;홈>TOOL;(#M)홈>배송비 절약템 🛒 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제'
  • '더툴랩 더 스타일 래쉬 볼륨 TSL003 블랙 × 45개 (#M)쿠팡 홈>뷰티>뷰티소품>아이소품>속눈썹관리 소품 Coupang > 뷰티 > 뷰티소품 > 아이소품 > 속눈썹관리 소품'
  • '더툴랩 해피림 아이래쉬 내추럴 가닥속눈썹 1pack 11.5N (#M)화장품/미용>뷰티소품>아이소품>속눈썹/속눈썹펌제 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제'
1
  • '트위저맨 Tweezerman 스테인리스 브로우 쉐이핑 가위 및 브러시 521626 (#M)홈>화장품/미용>뷰티소품>헤어소품>미용가위 Naverstore > 화장품/미용 > 뷰티소품 > 헤어소품 > 미용가위'
  • '트위저맨 스테인리스 브로우 셰이핑 시져 브러쉬 70238 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 베이스/프라이머 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 베이스/프라이머'
  • '트위저맨 스테인리스 브로우 셰이핑 시져 브러쉬 70238 ssg > 뷰티 > 메이크업 > 베이스메이크업 > 파운데이션 ssg > 뷰티 > 메이크업 > 베이스메이크업 > 파운데이션'
0
  • '피카소 속눈썹 빗 피카소 속눈썹 빗 (#M)홈>미용소품>기타소품>기타미용소품 OLIVEYOUNG > 미용소품 > 기타소품 > 기타미용소품'
  • '트위저맨 프로페셔널 폴딩 아이래쉬콤브 1개 (#M)쿠팡 홈>뷰티>뷰티소품>페이스소품>브러쉬 Coupang > 뷰티 > 뷰티소품 > 페이스소품 > 브러쉬'
  • '속눈썹롯드 속눈썹펌롯드 L컬(SHARP) (#M)홈>화장품/미용>뷰티소품>아이소품>기타아이소품 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 기타아이소품'
3
  • '[Tweezerman] 트위저맨 클래식 속눈썹 뷰러 로즈 골드 1개입 (#M)홈>화장품/미용>뷰티소품>메이크업브러시>브러시세트 Naverstore > 화장품/미용 > 뷰티소품 > 메이크업브러시 > 브러시세트'
  • '[에뛰드] 마이 뷰티툴 뷰러 (1EA) (#M)홈>TOOL Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 뷰러'
  • '시세이도 213뷰러 전체뷰러 속눈썹 고데기+뷰러리필 LotteOn > 뷰티 > 뷰티소품 > 아이소품 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리'
4
  • 'e.l.f. 듀얼 펜슬 샤프너 10세트 (#M)쿠팡 홈>뷰티>뷰티소품>아이소품>족집게/샤프너 Coupang > 뷰티 > 뷰티소품 > 아이소품 > 족집게/샤프너'
  • 'e.l.f. 듀얼 펜슬 샤프너 혼합 색상 × 6개입 (#M)쿠팡 홈>뷰티>뷰티소품>아이소품>족집게/샤프너 Coupang > 뷰티 > 뷰티소품 > 아이소품 > 족집게/샤프너'
  • '[맥]펜슬 샤프너 (#M)홈>화장품/미용>뷰티소품>아이소품>샤프너 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 샤프너'

Evaluation

Metrics

Label Accuracy
all 0.9622

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt6_3")
# Run inference
preds = model("Tweezerman 클래식 아이래쉬 컬러 속눈썹 뷰러  (#M)화장품/미용>뷰티소품>아이소품>눈썹칼 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 눈썹칼")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 13 20.7017 46
Label Training Sample Count
0 50
1 9
3 50
4 22
5 50

Training Hyperparameters

  • batch_size: (64, 64)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 100
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0035 1 0.4788 -
0.1767 50 0.4758 -
0.3534 100 0.4629 -
0.5300 150 0.3827 -
0.7067 200 0.2023 -
0.8834 250 0.0454 -
1.0601 300 0.0031 -
1.2367 350 0.0001 -
1.4134 400 0.0001 -
1.5901 450 0.0 -
1.7668 500 0.0 -
1.9435 550 0.0001 -
2.1201 600 0.0 -
2.2968 650 0.0 -
2.4735 700 0.0 -
2.6502 750 0.0 -
2.8269 800 0.0 -
3.0035 850 0.0 -
3.1802 900 0.0 -
3.3569 950 0.0 -
3.5336 1000 0.0 -
3.7102 1050 0.0 -
3.8869 1100 0.0 -
4.0636 1150 0.0 -
4.2403 1200 0.0 -
4.4170 1250 0.0001 -
4.5936 1300 0.0012 -
4.7703 1350 0.0006 -
4.9470 1400 0.0 -
5.1237 1450 0.0 -
5.3004 1500 0.0 -
5.4770 1550 0.0 -
5.6537 1600 0.0 -
5.8304 1650 0.0 -
6.0071 1700 0.0 -
6.1837 1750 0.0 -
6.3604 1800 0.0 -
6.5371 1850 0.0 -
6.7138 1900 0.0 -
6.8905 1950 0.0 -
7.0671 2000 0.0 -
7.2438 2050 0.0 -
7.4205 2100 0.0 -
7.5972 2150 0.0 -
7.7739 2200 0.0 -
7.9505 2250 0.0 -
8.1272 2300 0.0 -
8.3039 2350 0.0 -
8.4806 2400 0.0 -
8.6572 2450 0.0 -
8.8339 2500 0.0 -
9.0106 2550 0.0 -
9.1873 2600 0.0 -
9.3640 2650 0.0 -
9.5406 2700 0.0 -
9.7173 2750 0.0 -
9.8940 2800 0.0 -
10.0707 2850 0.0 -
10.2473 2900 0.0 -
10.4240 2950 0.0 -
10.6007 3000 0.0 -
10.7774 3050 0.0 -
10.9541 3100 0.0 -
11.1307 3150 0.0 -
11.3074 3200 0.0 -
11.4841 3250 0.0 -
11.6608 3300 0.0 -
11.8375 3350 0.0 -
12.0141 3400 0.0 -
12.1908 3450 0.0 -
12.3675 3500 0.0 -
12.5442 3550 0.0 -
12.7208 3600 0.0 -
12.8975 3650 0.0 -
13.0742 3700 0.0 -
13.2509 3750 0.0 -
13.4276 3800 0.0 -
13.6042 3850 0.0 -
13.7809 3900 0.0 -
13.9576 3950 0.0 -
14.1343 4000 0.0 -
14.3110 4050 0.0 -
14.4876 4100 0.0 -
14.6643 4150 0.0 -
14.8410 4200 0.0 -
15.0177 4250 0.0 -
15.1943 4300 0.0 -
15.3710 4350 0.0 -
15.5477 4400 0.0 -
15.7244 4450 0.0 -
15.9011 4500 0.0 -
16.0777 4550 0.0 -
16.2544 4600 0.0 -
16.4311 4650 0.0 -
16.6078 4700 0.0 -
16.7845 4750 0.0 -
16.9611 4800 0.0 -
17.1378 4850 0.0 -
17.3145 4900 0.0 -
17.4912 4950 0.0 -
17.6678 5000 0.0 -
17.8445 5050 0.0 -
18.0212 5100 0.0 -
18.1979 5150 0.0 -
18.3746 5200 0.0 -
18.5512 5250 0.0 -
18.7279 5300 0.0 -
18.9046 5350 0.0 -
19.0813 5400 0.0 -
19.2580 5450 0.0 -
19.4346 5500 0.0 -
19.6113 5550 0.0 -
19.7880 5600 0.0 -
19.9647 5650 0.0 -
20.1413 5700 0.0 -
20.3180 5750 0.0 -
20.4947 5800 0.0 -
20.6714 5850 0.0 -
20.8481 5900 0.0 -
21.0247 5950 0.0 -
21.2014 6000 0.0 -
21.3781 6050 0.0 -
21.5548 6100 0.0 -
21.7314 6150 0.0 -
21.9081 6200 0.0 -
22.0848 6250 0.0 -
22.2615 6300 0.0 -
22.4382 6350 0.0 -
22.6148 6400 0.0 -
22.7915 6450 0.0 -
22.9682 6500 0.0 -
23.1449 6550 0.0 -
23.3216 6600 0.0 -
23.4982 6650 0.0 -
23.6749 6700 0.0 -
23.8516 6750 0.0 -
24.0283 6800 0.0 -
24.2049 6850 0.0 -
24.3816 6900 0.0 -
24.5583 6950 0.0 -
24.7350 7000 0.0 -
24.9117 7050 0.0 -
25.0883 7100 0.0 -
25.2650 7150 0.0 -
25.4417 7200 0.0 -
25.6184 7250 0.0 -
25.7951 7300 0.0 -
25.9717 7350 0.0 -
26.1484 7400 0.0 -
26.3251 7450 0.0 -
26.5018 7500 0.0 -
26.6784 7550 0.0 -
26.8551 7600 0.0 -
27.0318 7650 0.0 -
27.2085 7700 0.0 -
27.3852 7750 0.0 -
27.5618 7800 0.0 -
27.7385 7850 0.0 -
27.9152 7900 0.0 -
28.0919 7950 0.0 -
28.2686 8000 0.0 -
28.4452 8050 0.0 -
28.6219 8100 0.0 -
28.7986 8150 0.0 -
28.9753 8200 0.0 -
29.1519 8250 0.0 -
29.3286 8300 0.0 -
29.5053 8350 0.0 -
29.6820 8400 0.0 -
29.8587 8450 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
5,430
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mini1013/master_cate_top_bt6_3

Base model

klue/roberta-base
Finetuned
(159)
this model

Evaluation results