SetFit with klue/roberta-base

This is a SetFit model that can be used for Text Classification. This SetFit model uses klue/roberta-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

  • Model Type: SetFit
  • Sentence Transformer body: klue/roberta-base
  • Classification head: a LogisticRegression instance
  • Maximum Sequence Length: 512 tokens
  • Number of Classes: 8 classes

Model Sources

Model Labels

Label Examples
7
  • '[JAJU/자주] 원형 리필 공병 통 110ml ssg > 뷰티 > 미용기기/소품 > 거울/용기/기타소품;ssg > 뷰티 > 헤어/바디/미용/구강 > 미용기기 ssg > 뷰티 > 미용기기/소품 > 거울/용기/기타소품'
  • '세맘스 아기랑 + 엄마랑 파우치 세트 핑크스마일_엄마(가로 11.5cm x 세로 13cm), 아기(가로 8cm x 세로 10.5cm) (#M)쿠팡 홈>여행용품>여행파우치>화장품파우치 Coupang > 뷰티 > 뷰티소품 > 용기/거울/기타소품 > 파우치'
  • '라인 프린팅 파스텔컬러 롤온공병 10ml 6종 세트 흰색(뚜껑) × 1세트 (#M)쿠팡 홈>뷰티>뷰티소품>용기/거울/기타소품>기타소품 Coupang > 뷰티 > 뷰티소품 > 용기/거울/기타소품 > 기타소품'
3
  • '트위저맨 슬랜트 트위저 족집게 베이비 핑크 × 9개 (#M)쿠팡 홈>뷰티>뷰티소품>아이소품>족집게/샤프너 Coupang > 뷰티 > 뷰티소품 > 아이소품 > 족집게/샤프너'
  • '트위저맨 미니 슬랜트 트위저 로즈골드 265161 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 파운데이션 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 파운데이션'
  • '트위저맨 클래식 슬랜트 트위저 베이비핑크, 1개 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬'
6
  • '천일 매직 롯드 10P 1호~6호 뿌리볼륨롯드 파마롯드 매직롯드 5호_1개 홈>화장품/미용>뷰티소품>헤어소품>헤어롤;홈>전체상품;(#M)홈>롯드 Naverstore > 화장품/미용 > 뷰티소품 > 헤어소품 > 헤어롤'
  • '다이슨 45mm 35mm 롤브러쉬 대왕롤빗 엉킴방지빗 니켈블랙 (#M)홈>미용건강 Naverstore > 화장품/미용 > 뷰티소품 > 헤어소품 > 헤어브러시'
  • '프리시전 섀이더 브러쉬 스몰 단품없음 LotteOn > 뷰티 > 뷰티기기 > 액세서리/소모품 LotteOn > 뷰티 > 뷰티기기 > 액세서리/소모품'
0
  • '천연 자초 립밤 만들기 키트 diy 향 선택(8개) 사과+에탄올20ml (#M)홈>비누&립밤&세제 만들기>만들기키트 Naverstore > 화장품/미용 > 색조메이크업 > 립케어'
5
  • '프로 피니쉬 스폰지 단품없음 LotteOn > 뷰티 > 뷰티기기 > 액세서리/소모품 LotteOn > 뷰티 > 뷰티기기 > 액세서리/소모품'
  • 'JAJU 사각 면봉_화장 겸용 200P 기타_FR LotteOn > 뷰티 > 뷰티기기/소품 > 위생용품 > 면봉 LotteOn > 뷰티 > 뷰티기기/소품 > 위생용품 > 면봉'
  • 'mts 롤러 기계 MTS 스탬프 앰플 바르는 도구 니들 빠른흡수 상품선택_2-더마롤러-0.3mm LotteOn > 뷰티 > 뷰티기기/소품 > 피부케어기 > 피부케어기 LotteOn > 뷰티 > 뷰티기기/소품 > 피부케어기 > 피부케어기'
1
  • '더툴랩 101B 베이비태스커 파운데이션 베이스 메이크업 브러쉬 쿠션브러쉬 236097 (#M)홈>화장품/미용>뷰티소품>메이크업브러시>브러시세트 Naverstore > 화장품/미용 > 뷰티소품 > 메이크업브러시 > 브러시세트'
  • '더툴랩 204 블렌딩 아이섀도우 스몰 총알 브러쉬 (#M)화장품/미용>뷰티소품>페이스소품>코털제거기 AD > Naverstore > 화장품/미용 > 뷰티소품 > 페이스소품 > 코털제거기'
  • '더툴랩 브러쉬 231 컨실러 파운데이션 (#M)화장품/미용>뷰티소품>메이크업브러시>페이스브러시 LO > Naverstore > 화장품/미용 > 뷰티소품 > 메이크업브러시 > 페이스브러시'
2
  • '요들가운 미용실 LC 커트보 어깨보 컷트보 인쇄가능 15.모델210T커트보_블랙 (#M)홈>가운,유니폼>컷트보 Naverstore > 화장품/미용 > 뷰티소품 > 헤어소품 > 기타헤어소품'
  • '요들가운 미용실 LC 커트보 어깨보 컷트보 인쇄가능 12.듀스포체크 커트보_퍼플 (#M)홈>가운,유니폼>컷트보 Naverstore > 화장품/미용 > 뷰티소품 > 헤어소품 > 기타헤어소품'
  • '[백화점][JPClarisse] 장폴클라리쎄 거미 왕대 집게핀 JPSA0001 진베이지 (#M)GSSHOP>뷰티>뷰티소품>헤어소품 GSSHOP > 뷰티 > 뷰티소품 > 헤어소품 > 헤어집게'
4
  • '레터링 쇄골 현아 타투 스티커 30장 마스크 판박이 3타투세트30장-수채화 LotteOn > 뷰티 > 마스크/팩 > 기타패치 LotteOn > 뷰티 > 마스크/팩 > 기타패치'
  • '산리오 캐릭터 타투 스티커 어린이 문신 마스크판박이 5.헬로키티(2매입) 홈>패션잡화🛍>잡화🐱\u200d💻;(#M)홈>캐릭터🙂>산리오 Naverstore > 화장품/미용 > 뷰티소품 > 타투'
  • '문신 타투 스티커 바디 형 쇄골 반팔 레터링 흉터 커버__개성 다이소 헤나 다목적 노출 패션 미용 다용도 추천 패셔니스타 여름 A type 타투스티커 30종세트 (#M)SSG.COM/헤어/바디/슬리밍/푸드/기타용품/타투 ssg > 뷰티 > 헤어/바디 > 슬리밍/푸드/기타용품 > 타투'

Evaluation

Metrics

Label Accuracy
all 0.9419

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_item_top_bt6")
# Run inference
preds = model("에스쁘아 에어 퍼프 5개입 소프트 터치 에어퍼프 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 퍼프 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 12 22.0313 72
Label Training Sample Count
0 1
1 50
2 50
3 50
4 50
5 50
6 50
7 50

Training Hyperparameters

  • batch_size: (64, 64)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 100
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0018 1 0.4099 -
0.0911 50 0.3973 -
0.1821 100 0.3456 -
0.2732 150 0.2947 -
0.3643 200 0.2369 -
0.4554 250 0.1705 -
0.5464 300 0.107 -
0.6375 350 0.0696 -
0.7286 400 0.0494 -
0.8197 450 0.0488 -
0.9107 500 0.0307 -
1.0018 550 0.0259 -
1.0929 600 0.0247 -
1.1840 650 0.022 -
1.2750 700 0.0215 -
1.3661 750 0.005 -
1.4572 800 0.0007 -
1.5483 850 0.0004 -
1.6393 900 0.0002 -
1.7304 950 0.0001 -
1.8215 1000 0.0001 -
1.9126 1050 0.0001 -
2.0036 1100 0.0001 -
2.0947 1150 0.0001 -
2.1858 1200 0.0001 -
2.2769 1250 0.0 -
2.3679 1300 0.0 -
2.4590 1350 0.0 -
2.5501 1400 0.0 -
2.6412 1450 0.0 -
2.7322 1500 0.0 -
2.8233 1550 0.0 -
2.9144 1600 0.0 -
3.0055 1650 0.0 -
3.0965 1700 0.0 -
3.1876 1750 0.0 -
3.2787 1800 0.0 -
3.3698 1850 0.0 -
3.4608 1900 0.0 -
3.5519 1950 0.0 -
3.6430 2000 0.0 -
3.7341 2050 0.0 -
3.8251 2100 0.0 -
3.9162 2150 0.0 -
4.0073 2200 0.0 -
4.0984 2250 0.0 -
4.1894 2300 0.0 -
4.2805 2350 0.0 -
4.3716 2400 0.0 -
4.4627 2450 0.0 -
4.5537 2500 0.0 -
4.6448 2550 0.0 -
4.7359 2600 0.0 -
4.8270 2650 0.0 -
4.9180 2700 0.0 -
5.0091 2750 0.0 -
5.1002 2800 0.0 -
5.1913 2850 0.0 -
5.2823 2900 0.0 -
5.3734 2950 0.0 -
5.4645 3000 0.0 -
5.5556 3050 0.0 -
5.6466 3100 0.0 -
5.7377 3150 0.0 -
5.8288 3200 0.0 -
5.9199 3250 0.0 -
6.0109 3300 0.0 -
6.1020 3350 0.0 -
6.1931 3400 0.0 -
6.2842 3450 0.0 -
6.3752 3500 0.0 -
6.4663 3550 0.0 -
6.5574 3600 0.0 -
6.6485 3650 0.0 -
6.7395 3700 0.0 -
6.8306 3750 0.0 -
6.9217 3800 0.0 -
7.0128 3850 0.0 -
7.1038 3900 0.0 -
7.1949 3950 0.0 -
7.2860 4000 0.0 -
7.3770 4050 0.0 -
7.4681 4100 0.0 -
7.5592 4150 0.0 -
7.6503 4200 0.0 -
7.7413 4250 0.0 -
7.8324 4300 0.0 -
7.9235 4350 0.0 -
8.0146 4400 0.0 -
8.1056 4450 0.0 -
8.1967 4500 0.0 -
8.2878 4550 0.0 -
8.3789 4600 0.0 -
8.4699 4650 0.0 -
8.5610 4700 0.0 -
8.6521 4750 0.0 -
8.7432 4800 0.0 -
8.8342 4850 0.0 -
8.9253 4900 0.0 -
9.0164 4950 0.0 -
9.1075 5000 0.0 -
9.1985 5050 0.0 -
9.2896 5100 0.0 -
9.3807 5150 0.0 -
9.4718 5200 0.0 -
9.5628 5250 0.0 -
9.6539 5300 0.0 -
9.7450 5350 0.0 -
9.8361 5400 0.0 -
9.9271 5450 0.0 -
10.0182 5500 0.0 -
10.1093 5550 0.0 -
10.2004 5600 0.0 -
10.2914 5650 0.0 -
10.3825 5700 0.0 -
10.4736 5750 0.0 -
10.5647 5800 0.0 -
10.6557 5850 0.0 -
10.7468 5900 0.0 -
10.8379 5950 0.0 -
10.9290 6000 0.0 -
11.0200 6050 0.0 -
11.1111 6100 0.0 -
11.2022 6150 0.0 -
11.2933 6200 0.0 -
11.3843 6250 0.0 -
11.4754 6300 0.0 -
11.5665 6350 0.0 -
11.6576 6400 0.0 -
11.7486 6450 0.0 -
11.8397 6500 0.0 -
11.9308 6550 0.0 -
12.0219 6600 0.0 -
12.1129 6650 0.0 -
12.2040 6700 0.0 -
12.2951 6750 0.0 -
12.3862 6800 0.0 -
12.4772 6850 0.0 -
12.5683 6900 0.0 -
12.6594 6950 0.0 -
12.7505 7000 0.0 -
12.8415 7050 0.0 -
12.9326 7100 0.0 -
13.0237 7150 0.0 -
13.1148 7200 0.0 -
13.2058 7250 0.0 -
13.2969 7300 0.0 -
13.3880 7350 0.0 -
13.4791 7400 0.0 -
13.5701 7450 0.0 -
13.6612 7500 0.0 -
13.7523 7550 0.0 -
13.8434 7600 0.0 -
13.9344 7650 0.0 -
14.0255 7700 0.0 -
14.1166 7750 0.0 -
14.2077 7800 0.0 -
14.2987 7850 0.0 -
14.3898 7900 0.0 -
14.4809 7950 0.0 -
14.5719 8000 0.0 -
14.6630 8050 0.0 -
14.7541 8100 0.0 -
14.8452 8150 0.0 -
14.9362 8200 0.0 -
15.0273 8250 0.0 -
15.1184 8300 0.0 -
15.2095 8350 0.0 -
15.3005 8400 0.0 -
15.3916 8450 0.0 -
15.4827 8500 0.0 -
15.5738 8550 0.012 -
15.6648 8600 0.0012 -
15.7559 8650 0.0003 -
15.8470 8700 0.0 -
15.9381 8750 0.0 -
16.0291 8800 0.0 -
16.1202 8850 0.0 -
16.2113 8900 0.0 -
16.3024 8950 0.0 -
16.3934 9000 0.0 -
16.4845 9050 0.0 -
16.5756 9100 0.0 -
16.6667 9150 0.0 -
16.7577 9200 0.0 -
16.8488 9250 0.0 -
16.9399 9300 0.0 -
17.0310 9350 0.0 -
17.1220 9400 0.0 -
17.2131 9450 0.0 -
17.3042 9500 0.0 -
17.3953 9550 0.0 -
17.4863 9600 0.0 -
17.5774 9650 0.0 -
17.6685 9700 0.0 -
17.7596 9750 0.0 -
17.8506 9800 0.0 -
17.9417 9850 0.0 -
18.0328 9900 0.0 -
18.1239 9950 0.0 -
18.2149 10000 0.0 -
18.3060 10050 0.0 -
18.3971 10100 0.0 -
18.4882 10150 0.0 -
18.5792 10200 0.0 -
18.6703 10250 0.0 -
18.7614 10300 0.0 -
18.8525 10350 0.0 -
18.9435 10400 0.0 -
19.0346 10450 0.0 -
19.1257 10500 0.0 -
19.2168 10550 0.0 -
19.3078 10600 0.0 -
19.3989 10650 0.0 -
19.4900 10700 0.0 -
19.5811 10750 0.0 -
19.6721 10800 0.0 -
19.7632 10850 0.0 -
19.8543 10900 0.0 -
19.9454 10950 0.0 -
20.0364 11000 0.0 -
20.1275 11050 0.0 -
20.2186 11100 0.0 -
20.3097 11150 0.0 -
20.4007 11200 0.0 -
20.4918 11250 0.0 -
20.5829 11300 0.0 -
20.6740 11350 0.0 -
20.7650 11400 0.0 -
20.8561 11450 0.0 -
20.9472 11500 0.0 -
21.0383 11550 0.0 -
21.1293 11600 0.0 -
21.2204 11650 0.0 -
21.3115 11700 0.0 -
21.4026 11750 0.0 -
21.4936 11800 0.0 -
21.5847 11850 0.0 -
21.6758 11900 0.0 -
21.7668 11950 0.0 -
21.8579 12000 0.0 -
21.9490 12050 0.0 -
22.0401 12100 0.0 -
22.1311 12150 0.0 -
22.2222 12200 0.0 -
22.3133 12250 0.0 -
22.4044 12300 0.0 -
22.4954 12350 0.0 -
22.5865 12400 0.0 -
22.6776 12450 0.0 -
22.7687 12500 0.0 -
22.8597 12550 0.0 -
22.9508 12600 0.0 -
23.0419 12650 0.0 -
23.1330 12700 0.0 -
23.2240 12750 0.0 -
23.3151 12800 0.0 -
23.4062 12850 0.0 -
23.4973 12900 0.0 -
23.5883 12950 0.0 -
23.6794 13000 0.0 -
23.7705 13050 0.0 -
23.8616 13100 0.0 -
23.9526 13150 0.0 -
24.0437 13200 0.0 -
24.1348 13250 0.0 -
24.2259 13300 0.0 -
24.3169 13350 0.0 -
24.4080 13400 0.0 -
24.4991 13450 0.0 -
24.5902 13500 0.0 -
24.6812 13550 0.0 -
24.7723 13600 0.0 -
24.8634 13650 0.0 -
24.9545 13700 0.0 -
25.0455 13750 0.0 -
25.1366 13800 0.0 -
25.2277 13850 0.0 -
25.3188 13900 0.0 -
25.4098 13950 0.0 -
25.5009 14000 0.0 -
25.5920 14050 0.0 -
25.6831 14100 0.0 -
25.7741 14150 0.0 -
25.8652 14200 0.0 -
25.9563 14250 0.0 -
26.0474 14300 0.0 -
26.1384 14350 0.0 -
26.2295 14400 0.0 -
26.3206 14450 0.0 -
26.4117 14500 0.0 -
26.5027 14550 0.0 -
26.5938 14600 0.0 -
26.6849 14650 0.0 -
26.7760 14700 0.0 -
26.8670 14750 0.0 -
26.9581 14800 0.0 -
27.0492 14850 0.0 -
27.1403 14900 0.0 -
27.2313 14950 0.0 -
27.3224 15000 0.0 -
27.4135 15050 0.0 -
27.5046 15100 0.0 -
27.5956 15150 0.0 -
27.6867 15200 0.0 -
27.7778 15250 0.0 -
27.8689 15300 0.0 -
27.9599 15350 0.0 -
28.0510 15400 0.0 -
28.1421 15450 0.0 -
28.2332 15500 0.0 -
28.3242 15550 0.0 -
28.4153 15600 0.0 -
28.5064 15650 0.0 -
28.5974 15700 0.0 -
28.6885 15750 0.0 -
28.7796 15800 0.0 -
28.8707 15850 0.0 -
28.9617 15900 0.0 -
29.0528 15950 0.0 -
29.1439 16000 0.0 -
29.2350 16050 0.0 -
29.3260 16100 0.0 -
29.4171 16150 0.0 -
29.5082 16200 0.0 -
29.5993 16250 0.0 -
29.6903 16300 0.0 -
29.7814 16350 0.0 -
29.8725 16400 0.0 -
29.9636 16450 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
10,574
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mini1013/master_item_top_bt6

Base model

klue/roberta-base
Finetuned
(159)
this model

Evaluation results