metadata
base_model: microsoft/Phi-3-mini-4k-instruct
library_name: peft
license: mit
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: phi-3-mini-LoRA-mergedatafilter3_split
results: []
phi-3-mini-LoRA-mergedatafilter3_split
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3387
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 192
- total_eval_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4848 | 0.1462 | 800 | 0.4776 |
0.4265 | 0.2924 | 1600 | 0.4238 |
0.3995 | 0.4386 | 2400 | 0.3986 |
0.3848 | 0.5848 | 3200 | 0.3839 |
0.3742 | 0.7310 | 4000 | 0.3742 |
0.3679 | 0.8772 | 4800 | 0.3669 |
0.3616 | 1.0233 | 5600 | 0.3625 |
0.3574 | 1.1695 | 6400 | 0.3569 |
0.3537 | 1.3157 | 7200 | 0.3537 |
0.3523 | 1.4619 | 8000 | 0.3516 |
0.3491 | 1.6081 | 8800 | 0.3495 |
0.3478 | 1.7543 | 9600 | 0.3483 |
0.3467 | 1.9005 | 10400 | 0.3470 |
0.3455 | 2.0467 | 11200 | 0.3459 |
0.3455 | 2.1929 | 12000 | 0.3451 |
0.3442 | 2.3391 | 12800 | 0.3444 |
0.3424 | 2.4853 | 13600 | 0.3436 |
0.3431 | 2.6315 | 14400 | 0.3432 |
0.3427 | 2.7777 | 15200 | 0.3426 |
0.3424 | 2.9238 | 16000 | 0.3423 |
0.3419 | 3.0700 | 16800 | 0.3418 |
0.3413 | 3.2162 | 17600 | 0.3415 |
0.3417 | 3.3624 | 18400 | 0.3412 |
0.3406 | 3.5086 | 19200 | 0.3408 |
0.34 | 3.6548 | 20000 | 0.3407 |
0.341 | 3.8010 | 20800 | 0.3406 |
0.3395 | 3.9472 | 21600 | 0.3403 |
0.3415 | 4.0934 | 22400 | 0.3401 |
0.3398 | 4.2396 | 23200 | 0.3400 |
0.3395 | 4.3858 | 24000 | 0.3398 |
0.3405 | 4.5320 | 24800 | 0.3396 |
0.3385 | 4.6781 | 25600 | 0.3396 |
0.339 | 4.8243 | 26400 | 0.3395 |
0.3391 | 4.9705 | 27200 | 0.3395 |
0.3397 | 5.1167 | 28000 | 0.3393 |
0.337 | 5.2629 | 28800 | 0.3393 |
0.3383 | 5.4091 | 29600 | 0.3392 |
0.3384 | 5.5553 | 30400 | 0.3391 |
0.3383 | 5.7015 | 31200 | 0.3391 |
0.3386 | 5.8477 | 32000 | 0.3390 |
0.3391 | 5.9939 | 32800 | 0.3390 |
0.3384 | 6.1401 | 33600 | 0.3390 |
0.3391 | 6.2863 | 34400 | 0.3390 |
0.3385 | 6.4325 | 35200 | 0.3389 |
0.338 | 6.5786 | 36000 | 0.3389 |
0.3384 | 6.7248 | 36800 | 0.3389 |
0.3377 | 6.8710 | 37600 | 0.3388 |
0.338 | 7.0172 | 38400 | 0.3388 |
0.3385 | 7.1634 | 39200 | 0.3388 |
0.3393 | 7.3096 | 40000 | 0.3388 |
0.3377 | 7.4558 | 40800 | 0.3388 |
0.3382 | 7.6020 | 41600 | 0.3387 |
0.3387 | 7.7482 | 42400 | 0.3387 |
0.3391 | 7.8944 | 43200 | 0.3387 |
0.338 | 8.0406 | 44000 | 0.3387 |
0.3386 | 8.1868 | 44800 | 0.3387 |
0.3385 | 8.3330 | 45600 | 0.3387 |
0.3372 | 8.4791 | 46400 | 0.3387 |
0.338 | 8.6253 | 47200 | 0.3387 |
0.3387 | 8.7715 | 48000 | 0.3387 |
0.3391 | 8.9177 | 48800 | 0.3387 |
0.3379 | 9.0639 | 49600 | 0.3387 |
0.3386 | 9.2101 | 50400 | 0.3387 |
0.3385 | 9.3563 | 51200 | 0.3387 |
0.3385 | 9.5025 | 52000 | 0.3387 |
0.3385 | 9.6487 | 52800 | 0.3387 |
0.3386 | 9.7949 | 53600 | 0.3387 |
0.3373 | 9.9411 | 54400 | 0.3387 |
Framework versions
- PEFT 0.11.1
- Transformers 4.43.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1