bert-reg-crossencoder-contrastive

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Mse: 0.2717
  • Mae: 0.4451
  • Pearson Corr: -0.2034
  • Spearman Corr: -0.1953
  • Cosine Sim: 0.9027

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Mse Mae Pearson Corr Spearman Corr Cosine Sim
0.0148 1.0 41 0.0014 0.2889 0.4614 -0.1243 -0.0625 0.9003
0.0096 2.0 82 0.0074 0.3706 0.5451 -0.0433 -0.0347 0.9030
0.0059 3.0 123 0.0001 0.2549 0.4285 -0.0372 -0.0585 0.9032
0.004 4.0 164 0.0023 0.3175 0.4940 -0.0783 -0.0715 0.9029
0.0026 5.0 205 0.0003 0.2770 0.4519 -0.0308 -0.0070 0.9033
0.0019 6.0 246 0.0002 0.2771 0.4512 -0.1884 -0.1805 0.9028
0.0018 7.0 287 0.0001 0.2717 0.4451 -0.2034 -0.1953 0.9027

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for minoosh/bert-reg-crossencoder-contrastive

Finetuned
(2430)
this model