bert-reg-crossencoder-mae

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2200
  • Mse: 0.0781
  • Mae: 0.2200
  • Pearson Corr: 0.3461
  • Spearman Corr: 0.3129
  • Cosine Sim: 0.9050

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Mse Mae Pearson Corr Spearman Corr Cosine Sim
0.2886 1.0 41 0.2213 0.0742 0.2213 0.0650 0.0604 0.9037
0.2582 2.0 82 0.2223 0.0714 0.2223 0.1319 0.1417 0.9052
0.2615 3.0 123 0.2094 0.0670 0.2094 0.2859 0.2753 0.9113
0.2247 4.0 164 0.2152 0.0733 0.2152 0.3126 0.2705 0.9075
0.1942 5.0 205 0.2363 0.0890 0.2363 0.3631 0.3424 0.9112
0.1758 6.0 246 0.2193 0.0776 0.2193 0.3528 0.3247 0.9106
0.166 7.0 287 0.2200 0.0781 0.2200 0.3461 0.3129 0.9050

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for minoosh/bert-reg-crossencoder-mae

Finetuned
(2430)
this model