[QLoRA] Llama 3.2 1B
Collection
6 items
•
Updated
•
1
"Don't learn by adding vocabulary to vocab."
This model is completely broken. I figured it out after 6 hours of training.
Traceback (most recent call last):
File "/data/minpeter/qlora-llama-1b-chatml-v2/merge.py", line 6, in <module>
model = PeftModel.from_pretrained(base_model, peft_model_id)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/minpeter/anaconda3/envs/axo/lib/python3.12/site-packages/peft/peft_model.py", line 581, in from_pretrained
load_result = model.load_adapter(
^^^^^^^^^^^^^^^^^^^^
File "/home/minpeter/anaconda3/envs/axo/lib/python3.12/site-packages/peft/peft_model.py", line 1239, in load_adapter
load_result = set_peft_model_state_dict(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/minpeter/anaconda3/envs/axo/lib/python3.12/site-packages/peft/utils/save_and_load.py", line 451, in set_peft_model_state_dict
load_result = model.load_state_dict(peft_model_state_dict, strict=False)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/minpeter/anaconda3/envs/axo/lib/python3.12/site-packages/torch/nn/modules/module.py", line 2584, in load_state_dict
raise RuntimeError(
RuntimeError: Error(s) in loading state_dict for PeftModelForCausalLM:
size mismatch for base_model.model.model.embed_tokens.modules_to_save.default.weight: copying a param with shape torch.Size([128258, 2048]) from checkpoint, the shape in current model is torch.Size([128256, 2048]).
size mismatch for base_model.model.lm_head.modules_to_save.default.weight: copying a param with shape torch.Size([128258, 2048]) from checkpoint, the shape in current model is torch.Size([128256, 2048]).
axolotl version: 0.6.0
base_model: meta-llama/Llama-3.2-1B
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: teknium/OpenHermes-2.5
type: chat_template
chat_template: chatml
field_messages: conversations
message_field_role: from
message_field_content: value
shards: 1
save_safetensors: true
auto_resume_from_checkpoints: true
save_steps: 200
chat_template: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
# saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
tokens:
- <|im_start|>
special_tokens:
eos_token: <|im_end|>
pad_token: <|end_of_text|>
lora_modules_to_save:
- lm_head
- embed_tokens
# <--- unsloth config --->
unsloth_lora_mlp: true
unsloth_lora_qkv: true
unsloth_lora_o: true
This model is a fine-tuned version of meta-llama/Llama-3.2-1B on the teknium/OpenHermes-2.5 dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.2931 | 0.0000 | 1 | 1.3097 |
1.0603 | 0.2500 | 5419 | 0.9798 |
0.7964 | 0.5000 | 10838 | 0.9218 |
0.7602 | 0.7500 | 16257 | 0.8874 |
Base model
meta-llama/Llama-3.2-1B