|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: reviews_sum |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# reviews_sum |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.8535 |
|
- Rouge1: 0.0273 |
|
- Rouge2: 0.0 |
|
- Rougel: 0.0277 |
|
- Rougelsum: 0.0274 |
|
- Gen Len: 19.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 395 | 3.4194 | 0.0339 | 0.0 | 0.0338 | 0.0338 | 19.0 | |
|
| 4.9137 | 2.0 | 790 | 3.0496 | 0.0339 | 0.0 | 0.0338 | 0.0338 | 19.0 | |
|
| 3.1919 | 3.0 | 1185 | 2.9381 | 0.0339 | 0.0 | 0.0338 | 0.0338 | 19.0 | |
|
| 2.8961 | 4.0 | 1580 | 2.8875 | 0.0339 | 0.0 | 0.0338 | 0.0338 | 19.0 | |
|
| 2.8961 | 5.0 | 1975 | 2.8487 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | |
|
| 2.72 | 6.0 | 2370 | 2.8328 | 0.0339 | 0.0 | 0.0338 | 0.0338 | 19.0 | |
|
| 2.5695 | 7.0 | 2765 | 2.8332 | 0.0273 | 0.0 | 0.0277 | 0.0274 | 19.0 | |
|
| 2.4644 | 8.0 | 3160 | 2.8412 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | |
|
| 2.3847 | 9.0 | 3555 | 2.8358 | 0.0339 | 0.0 | 0.0338 | 0.0338 | 19.0 | |
|
| 2.3847 | 10.0 | 3950 | 2.8535 | 0.0273 | 0.0 | 0.0277 | 0.0274 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|