mlabonne's picture
Upload folder using huggingface_hub
46a3041 verified
|
raw
history blame
2.62 kB
---
license: other
tags:
- merge
- mergekit
- lazymergekit
base_model:
- NousResearch/Meta-Llama-3-8B-Instruct
- mlabonne/OrpoLlama-3-8B
- cognitivecomputations/dolphin-2.9-llama3-8b
- Locutusque/llama-3-neural-chat-v1-8b
- cloudyu/Meta-Llama-3-8B-Instruct-DPO
- vicgalle/Configurable-Llama-3-8B-v0.3
---
# ChimeraLlama-3-8B-v2
ChimeraLlama-3-8B-v2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct)
* [mlabonne/OrpoLlama-3-8B](https://huggingface.co/mlabonne/OrpoLlama-3-8B)
* [cognitivecomputations/dolphin-2.9-llama3-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b)
* [Locutusque/llama-3-neural-chat-v1-8b](https://huggingface.co/Locutusque/llama-3-neural-chat-v1-8b)
* [cloudyu/Meta-Llama-3-8B-Instruct-DPO](https://huggingface.co/cloudyu/Meta-Llama-3-8B-Instruct-DPO)
* [vicgalle/Configurable-Llama-3-8B-v0.3](https://huggingface.co/vicgalle/Configurable-Llama-3-8B-v0.3)
## 🧩 Configuration
```yaml
models:
- model: NousResearch/Meta-Llama-3-8B
# No parameters necessary for base model
- model: NousResearch/Meta-Llama-3-8B-Instruct
parameters:
density: 0.6
weight: 0.55
- model: mlabonne/OrpoLlama-3-8B
parameters:
density: 0.55
weight: 0.05
- model: cognitivecomputations/dolphin-2.9-llama3-8b
parameters:
density: 0.55
weight: 0.1
- model: Locutusque/llama-3-neural-chat-v1-8b
parameters:
density: 0.55
weight: 0.05
- model: cloudyu/Meta-Llama-3-8B-Instruct-DPO
parameters:
density: 0.55
weight: 0.15
- model: vicgalle/Configurable-Llama-3-8B-v0.3
parameters:
density: 0.55
weight: 0.1
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
parameters:
int8_mask: true
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/ChimeraLlama-3-8B-v2"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```