|
--- |
|
license: llama3 |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
datasets: |
|
- generator |
|
model-index: |
|
- name: cls_headline_llama3_v1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# cls_headline_llama3_v1 |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the generator dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2376 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 2 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| No log | 0.02 | 5 | 0.5809 | |
|
| 0.7814 | 0.04 | 10 | 0.4209 | |
|
| 0.7814 | 0.06 | 15 | 0.3950 | |
|
| 0.3932 | 0.08 | 20 | 0.3830 | |
|
| 0.3932 | 0.1 | 25 | 0.3727 | |
|
| 0.3726 | 0.12 | 30 | 0.3658 | |
|
| 0.3726 | 0.14 | 35 | 0.3597 | |
|
| 0.3572 | 0.16 | 40 | 0.3560 | |
|
| 0.3572 | 0.18 | 45 | 0.3524 | |
|
| 0.3437 | 0.2 | 50 | 0.3493 | |
|
| 0.3437 | 0.22 | 55 | 0.3452 | |
|
| 0.3404 | 0.24 | 60 | 0.3449 | |
|
| 0.3404 | 0.26 | 65 | 0.3427 | |
|
| 0.3349 | 0.28 | 70 | 0.3398 | |
|
| 0.3349 | 0.3 | 75 | 0.3368 | |
|
| 0.3342 | 0.32 | 80 | 0.3350 | |
|
| 0.3342 | 0.34 | 85 | 0.3322 | |
|
| 0.3316 | 0.36 | 90 | 0.3310 | |
|
| 0.3316 | 0.38 | 95 | 0.3290 | |
|
| 0.3251 | 0.4 | 100 | 0.3271 | |
|
| 0.3251 | 0.42 | 105 | 0.3251 | |
|
| 0.3137 | 0.44 | 110 | 0.3251 | |
|
| 0.3137 | 0.46 | 115 | 0.3245 | |
|
| 0.3216 | 0.48 | 120 | 0.3216 | |
|
| 0.3216 | 0.5 | 125 | 0.3204 | |
|
| 0.3171 | 0.52 | 130 | 0.3198 | |
|
| 0.3171 | 0.54 | 135 | 0.3167 | |
|
| 0.3161 | 0.56 | 140 | 0.3153 | |
|
| 0.3161 | 0.58 | 145 | 0.3152 | |
|
| 0.3176 | 0.6 | 150 | 0.3135 | |
|
| 0.3176 | 0.62 | 155 | 0.3123 | |
|
| 0.3089 | 0.64 | 160 | 0.3109 | |
|
| 0.3089 | 0.66 | 165 | 0.3102 | |
|
| 0.3109 | 0.68 | 170 | 0.3094 | |
|
| 0.3109 | 0.7 | 175 | 0.3070 | |
|
| 0.3058 | 0.72 | 180 | 0.3053 | |
|
| 0.3058 | 0.74 | 185 | 0.3030 | |
|
| 0.3041 | 0.76 | 190 | 0.3026 | |
|
| 0.3041 | 0.78 | 195 | 0.3012 | |
|
| 0.2975 | 0.8 | 200 | 0.2988 | |
|
| 0.2975 | 0.82 | 205 | 0.2972 | |
|
| 0.2861 | 0.84 | 210 | 0.2976 | |
|
| 0.2861 | 0.86 | 215 | 0.2956 | |
|
| 0.2964 | 0.88 | 220 | 0.2944 | |
|
| 0.2964 | 0.9 | 225 | 0.2918 | |
|
| 0.2907 | 0.92 | 230 | 0.2899 | |
|
| 0.2907 | 0.94 | 235 | 0.2893 | |
|
| 0.2861 | 0.96 | 240 | 0.2873 | |
|
| 0.2861 | 0.98 | 245 | 0.2870 | |
|
| 0.2794 | 1.0 | 250 | 0.2859 | |
|
| 0.2794 | 1.02 | 255 | 0.2902 | |
|
| 0.251 | 1.04 | 260 | 0.2857 | |
|
| 0.251 | 1.06 | 265 | 0.2876 | |
|
| 0.2498 | 1.08 | 270 | 0.2837 | |
|
| 0.2498 | 1.1 | 275 | 0.2852 | |
|
| 0.2445 | 1.12 | 280 | 0.2807 | |
|
| 0.2445 | 1.14 | 285 | 0.2809 | |
|
| 0.251 | 1.16 | 290 | 0.2806 | |
|
| 0.251 | 1.18 | 295 | 0.2818 | |
|
| 0.2455 | 1.2 | 300 | 0.2795 | |
|
| 0.2455 | 1.22 | 305 | 0.2772 | |
|
| 0.2416 | 1.24 | 310 | 0.2775 | |
|
| 0.2416 | 1.26 | 315 | 0.2754 | |
|
| 0.2463 | 1.28 | 320 | 0.2740 | |
|
| 0.2463 | 1.3 | 325 | 0.2740 | |
|
| 0.2381 | 1.32 | 330 | 0.2732 | |
|
| 0.2381 | 1.34 | 335 | 0.2727 | |
|
| 0.2401 | 1.36 | 340 | 0.2714 | |
|
| 0.2401 | 1.38 | 345 | 0.2698 | |
|
| 0.2426 | 1.4 | 350 | 0.2691 | |
|
| 0.2426 | 1.42 | 355 | 0.2671 | |
|
| 0.2371 | 1.44 | 360 | 0.2657 | |
|
| 0.2371 | 1.46 | 365 | 0.2650 | |
|
| 0.2409 | 1.48 | 370 | 0.2646 | |
|
| 0.2409 | 1.5 | 375 | 0.2620 | |
|
| 0.2386 | 1.52 | 380 | 0.2599 | |
|
| 0.2386 | 1.54 | 385 | 0.2592 | |
|
| 0.2331 | 1.56 | 390 | 0.2584 | |
|
| 0.2331 | 1.58 | 395 | 0.2571 | |
|
| 0.2339 | 1.6 | 400 | 0.2554 | |
|
| 0.2339 | 1.62 | 405 | 0.2563 | |
|
| 0.2295 | 1.64 | 410 | 0.2550 | |
|
| 0.2295 | 1.66 | 415 | 0.2527 | |
|
| 0.2349 | 1.68 | 420 | 0.2537 | |
|
| 0.2349 | 1.7 | 425 | 0.2515 | |
|
| 0.2296 | 1.72 | 430 | 0.2514 | |
|
| 0.2296 | 1.74 | 435 | 0.2486 | |
|
| 0.2288 | 1.76 | 440 | 0.2479 | |
|
| 0.2288 | 1.78 | 445 | 0.2478 | |
|
| 0.2346 | 1.8 | 450 | 0.2456 | |
|
| 0.2346 | 1.82 | 455 | 0.2440 | |
|
| 0.227 | 1.84 | 460 | 0.2424 | |
|
| 0.227 | 1.86 | 465 | 0.2427 | |
|
| 0.2217 | 1.88 | 470 | 0.2410 | |
|
| 0.2217 | 1.9 | 475 | 0.2402 | |
|
| 0.2203 | 1.92 | 480 | 0.2398 | |
|
| 0.2203 | 1.94 | 485 | 0.2406 | |
|
| 0.2129 | 1.96 | 490 | 0.2388 | |
|
| 0.2129 | 1.98 | 495 | 0.2358 | |
|
| 0.2195 | 2.0 | 500 | 0.2376 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0.dev0 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.14.1 |
|
|