mobicham's picture
Update README.md
66f3e32 verified
metadata
license: llama3.1
train: false
inference: false
pipeline_tag: text-generation

This is an HQQ all 4-bit (group-size=64) quantized Llama3.1-8B-Instruct model. We provide two versions:

image/png

image/gif

Model Size

Models fp16 HQQ 4-bit/gs-64 AWQ 4-bit GPTQ 4-bit
Bitrate (Linear layers) 16 4.5 4.25 4.25
VRAM (GB) 15.7 6.1 6.3 5.7

Model Decoding Speed

Models fp16 HQQ 4-bit/gs-64 AWQ 4-bit GPTQ 4-bit
Decoding* - short seq (tokens/sec) 53 125 67 3.7
Decoding* - long seq (tokens/sec) 50 97 65 21

*: RTX 3090

Performance

Models fp16 HQQ 4-bit/gs-64 (no calib) HQQ 4-bit/gs-64 (calib) AWQ 4-bit GPTQ 4-bit
ARC (25-shot) 60.49 60.32 60.92 57.85 61.18
HellaSwag (10-shot) 80.16 79.21 79.52 79.28 77.82
MMLU (5-shot) 68.98 67.07 67.74 67.14 67.93
TruthfulQA-MC2 54.03 53.89 54.11 51.87 53.58
Winogrande (5-shot) 77.98 76.24 76.48 76.4 76.64
GSM8K (5-shot) 75.44 71.27 75.36 73.47 72.25
Average 69.51 68.00 69.02 67.67 68.23
Relative performance 100% 97.83% 99.3% 97.35% 98.16%

You can reproduce the results above via pip install lm-eval==0.4.3

Usage

First, install the dependecies:

pip install git+https://github.com/mobiusml/hqq.git #master branch fix
pip install bitblas #if you use the bitblas backend

Also, make sure you use at least torch 2.4.0 or the nightly build with at least CUDA 12.1.

Then you can use the sample code below:

import torch
from transformers import AutoTokenizer
from hqq.models.hf.base import AutoHQQHFModel
from hqq.utils.patching import *
from hqq.core.quantize import *
from hqq.utils.generation_hf import HFGenerator

#Load the model
###################################################
#model_id = 'mobiuslabsgmbh/Llama-3.1-8b-instruct_4bitgs64_hqq' #no calib version
model_id = 'mobiuslabsgmbh/Llama-3.1-8b-instruct_4bitgs64_hqq_calib' #calibrated version

compute_dtype = torch.bfloat16 #bfloat16 for torchao_int4, float16 for bitblas
cache_dir = '.'
model     = AutoHQQHFModel.from_quantized(model_id, cache_dir=cache_dir, compute_dtype=compute_dtype)
tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir=cache_dir)

quant_config = BaseQuantizeConfig(nbits=4, group_size=64, quant_scale=False, quant_zero=False, axis=1)
patch_linearlayers(model, patch_add_quant_config, quant_config)

#Use optimized inference kernels
###################################################
HQQLinear.set_backend(HQQBackend.PYTORCH)
#prepare_for_inference(model) #default backend
prepare_for_inference(model, backend="torchao_int4") 
#prepare_for_inference(model, backend="bitblas") #takes a while to init...

#Generate
###################################################
#For longer context, make sure to allocate enough cache via the cache_size= parameter 
gen = HFGenerator(model, tokenizer, max_new_tokens=1000, do_sample=True, compile="partial").warmup() #Warm-up takes a while

gen.generate("Write an essay about large language models", print_tokens=True)
gen.generate("Tell me a funny joke!", print_tokens=True)
gen.generate("How to make a yummy chocolate cake?", print_tokens=True)