metadata
license: mit
tags:
- trl
- sft
- text-generation-inference
language:
- en
- zh
base_model:
- HuggingFaceTB/SmolLM2-360M-Instruct
pipeline_tag: text-generation
library_name: transformers
SmolR
Transformers
pip install transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "mohamedrasheqA/SmolR"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
messages = [{"role": "user", "content": "What is gravity?"}]
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
print(input_text)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
print(tokenizer.decode(outputs[0]))