monai
medical
File size: 3,559 Bytes
ac91715
 
759a8f1
ac91715
759a8f1
8190a12
a878930
967fa85
42e62c6
9a0d90d
d56249f
e54516b
261824f
f6cc1e0
2208e51
24b777e
3965a70
846b712
9365d43
df412c9
da44a57
03e9921
 
 
ac91715
759a8f1
d56249f
 
ac91715
 
8297fac
d56249f
ac91715
e54516b
ac91715
 
 
 
 
 
 
 
 
 
42e62c6
 
 
24b777e
ac91715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
{
    "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
    "version": "0.5.9",
    "changelog": {
        "0.5.9": "use monai 1.2.0",
        "0.5.8": "update TRT memory requirement in readme",
        "0.5.7": "add dataset dir example",
        "0.5.6": "add the ONNX-TensorRT way of model conversion",
        "0.5.5": "update retrained validation results and training curve",
        "0.5.4": "add non-deterministic note",
        "0.5.3": "adapt to BundleWorkflow interface",
        "0.5.2": "black autofix format and add name tag",
        "0.5.1": "modify dataset key name",
        "0.5.0": "use detection inferer",
        "0.4.5": "fixed some small changes with formatting in readme",
        "0.4.4": "add data resource to readme",
        "0.4.3": "update val patch size to avoid warning in monai 1.0.1",
        "0.4.2": "update to use monai 1.0.1",
        "0.4.1": "fix license Copyright error",
        "0.4.0": "add support for raw images",
        "0.3.0": "update license files",
        "0.2.0": "unify naming",
        "0.1.1": "add reference for LIDC dataset",
        "0.1.0": "complete the model package"
    },
    "monai_version": "1.2.0",
    "pytorch_version": "1.13.1",
    "numpy_version": "1.22.2",
    "optional_packages_version": {
        "nibabel": "4.0.1",
        "pytorch-ignite": "0.4.9",
        "torchvision": "0.14.1"
    },
    "name": "Lung nodule CT detection",
    "task": "CT lung nodule detection",
    "description": "A pre-trained model for volumetric (3D) detection of the lung lesion from CT image on LUNA16 dataset",
    "authors": "MONAI team",
    "copyright": "Copyright (c) MONAI Consortium",
    "data_source": "https://luna16.grand-challenge.org/Home/",
    "data_type": "nibabel",
    "image_classes": "1 channel data, CT at 0.703125 x 0.703125 x 1.25 mm",
    "label_classes": "dict data, containing Nx6 box and Nx1 classification labels.",
    "pred_classes": "dict data, containing Nx6 box, Nx1 classification labels, Nx1 classification scores.",
    "eval_metrics": {
        "mAP_IoU_0.10_0.50_0.05_MaxDet_100": 0.852,
        "AP_IoU_0.10_MaxDet_100": 0.858,
        "mAR_IoU_0.10_0.50_0.05_MaxDet_100": 0.998,
        "AR_IoU_0.10_MaxDet_100": 1.0
    },
    "intended_use": "This is an example, not to be used for diagnostic purposes",
    "references": [
        "Lin, Tsung-Yi, et al. 'Focal loss for dense object detection. ICCV 2017"
    ],
    "network_data_format": {
        "inputs": {
            "image": {
                "type": "image",
                "format": "magnitude",
                "modality": "CT",
                "num_channels": 1,
                "spatial_shape": [
                    "16*n",
                    "16*n",
                    "8*n"
                ],
                "dtype": "float16",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": true,
                "channel_def": {
                    "0": "image"
                }
            }
        },
        "outputs": {
            "pred": {
                "type": "object",
                "format": "dict",
                "dtype": "float16",
                "num_channels": 1,
                "spatial_shape": [
                    "n",
                    "n",
                    "n"
                ],
                "value_range": [
                    -10000,
                    10000
                ]
            }
        }
    }
}