File size: 3,559 Bytes
ac91715 759a8f1 ac91715 759a8f1 8190a12 a878930 967fa85 42e62c6 9a0d90d d56249f e54516b 261824f f6cc1e0 2208e51 24b777e 3965a70 846b712 9365d43 df412c9 da44a57 03e9921 ac91715 759a8f1 d56249f ac91715 8297fac d56249f ac91715 e54516b ac91715 42e62c6 24b777e ac91715 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
{
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
"version": "0.5.9",
"changelog": {
"0.5.9": "use monai 1.2.0",
"0.5.8": "update TRT memory requirement in readme",
"0.5.7": "add dataset dir example",
"0.5.6": "add the ONNX-TensorRT way of model conversion",
"0.5.5": "update retrained validation results and training curve",
"0.5.4": "add non-deterministic note",
"0.5.3": "adapt to BundleWorkflow interface",
"0.5.2": "black autofix format and add name tag",
"0.5.1": "modify dataset key name",
"0.5.0": "use detection inferer",
"0.4.5": "fixed some small changes with formatting in readme",
"0.4.4": "add data resource to readme",
"0.4.3": "update val patch size to avoid warning in monai 1.0.1",
"0.4.2": "update to use monai 1.0.1",
"0.4.1": "fix license Copyright error",
"0.4.0": "add support for raw images",
"0.3.0": "update license files",
"0.2.0": "unify naming",
"0.1.1": "add reference for LIDC dataset",
"0.1.0": "complete the model package"
},
"monai_version": "1.2.0",
"pytorch_version": "1.13.1",
"numpy_version": "1.22.2",
"optional_packages_version": {
"nibabel": "4.0.1",
"pytorch-ignite": "0.4.9",
"torchvision": "0.14.1"
},
"name": "Lung nodule CT detection",
"task": "CT lung nodule detection",
"description": "A pre-trained model for volumetric (3D) detection of the lung lesion from CT image on LUNA16 dataset",
"authors": "MONAI team",
"copyright": "Copyright (c) MONAI Consortium",
"data_source": "https://luna16.grand-challenge.org/Home/",
"data_type": "nibabel",
"image_classes": "1 channel data, CT at 0.703125 x 0.703125 x 1.25 mm",
"label_classes": "dict data, containing Nx6 box and Nx1 classification labels.",
"pred_classes": "dict data, containing Nx6 box, Nx1 classification labels, Nx1 classification scores.",
"eval_metrics": {
"mAP_IoU_0.10_0.50_0.05_MaxDet_100": 0.852,
"AP_IoU_0.10_MaxDet_100": 0.858,
"mAR_IoU_0.10_0.50_0.05_MaxDet_100": 0.998,
"AR_IoU_0.10_MaxDet_100": 1.0
},
"intended_use": "This is an example, not to be used for diagnostic purposes",
"references": [
"Lin, Tsung-Yi, et al. 'Focal loss for dense object detection. ICCV 2017"
],
"network_data_format": {
"inputs": {
"image": {
"type": "image",
"format": "magnitude",
"modality": "CT",
"num_channels": 1,
"spatial_shape": [
"16*n",
"16*n",
"8*n"
],
"dtype": "float16",
"value_range": [
0,
1
],
"is_patch_data": true,
"channel_def": {
"0": "image"
}
}
},
"outputs": {
"pred": {
"type": "object",
"format": "dict",
"dtype": "float16",
"num_channels": 1,
"spatial_shape": [
"n",
"n",
"n"
],
"value_range": [
-10000,
10000
]
}
}
}
}
|