|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This script is adapted from |
|
https://github.com/ildoonet/pytorch-gradual-warmup-lr/blob/master/warmup_scheduler/scheduler.py |
|
""" |
|
|
|
from torch.optim.lr_scheduler import ReduceLROnPlateau, _LRScheduler |
|
|
|
|
|
class GradualWarmupScheduler(_LRScheduler): |
|
"""Gradually warm-up(increasing) learning rate in optimizer. |
|
Proposed in 'Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour'. |
|
|
|
Args: |
|
optimizer (Optimizer): Wrapped optimizer. |
|
multiplier: target learning rate = base lr * multiplier if multiplier > 1.0. |
|
if multiplier = 1.0, lr starts from 0 and ends up with the base_lr. |
|
total_epoch: target learning rate is reached at total_epoch, gradually |
|
after_scheduler: after target_epoch, use this scheduler(eg. ReduceLROnPlateau) |
|
""" |
|
|
|
def __init__(self, optimizer, multiplier, total_epoch, after_scheduler=None): |
|
self.multiplier = multiplier |
|
if self.multiplier < 1.0: |
|
raise ValueError("multiplier should be greater thant or equal to 1.") |
|
self.total_epoch = total_epoch |
|
self.after_scheduler = after_scheduler |
|
self.finished = False |
|
super(GradualWarmupScheduler, self).__init__(optimizer) |
|
|
|
def get_lr(self): |
|
self.last_epoch = max(1, self.last_epoch) |
|
if self.last_epoch > self.total_epoch: |
|
if self.after_scheduler: |
|
if not self.finished: |
|
self.after_scheduler.base_lrs = [base_lr * self.multiplier for base_lr in self.base_lrs] |
|
self.finished = True |
|
return self.after_scheduler.get_last_lr() |
|
return [base_lr * self.multiplier for base_lr in self.base_lrs] |
|
|
|
if self.multiplier == 1.0: |
|
return [base_lr * (float(self.last_epoch) / self.total_epoch) for base_lr in self.base_lrs] |
|
else: |
|
return [ |
|
base_lr * ((self.multiplier - 1.0) * self.last_epoch / self.total_epoch + 1.0) |
|
for base_lr in self.base_lrs |
|
] |
|
|
|
def step_reduce_lr_on_plateau(self, metrics, epoch=None): |
|
if epoch is None: |
|
epoch = self.last_epoch + 1 |
|
self.last_epoch = ( |
|
epoch if epoch != 0 else 1 |
|
) |
|
if self.last_epoch <= self.total_epoch: |
|
warmup_lr = [ |
|
base_lr * ((self.multiplier - 1.0) * self.last_epoch / self.total_epoch + 1.0) |
|
for base_lr in self.base_lrs |
|
] |
|
for param_group, lr in zip(self.optimizer.param_groups, warmup_lr): |
|
param_group["lr"] = lr |
|
else: |
|
if epoch is None: |
|
self.after_scheduler.step(metrics, None) |
|
else: |
|
self.after_scheduler.step(metrics, epoch - self.total_epoch) |
|
|
|
def step(self, epoch=None, metrics=None): |
|
if not isinstance(self.after_scheduler, ReduceLROnPlateau): |
|
if self.finished and self.after_scheduler: |
|
if epoch is None: |
|
self.after_scheduler.step(None) |
|
else: |
|
self.after_scheduler.step(epoch - self.total_epoch) |
|
self._last_lr = self.after_scheduler.get_last_lr() |
|
else: |
|
return super(GradualWarmupScheduler, self).step(epoch) |
|
else: |
|
self.step_reduce_lr_on_plateau(metrics, epoch) |
|
|