|
{ |
|
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", |
|
"version": "0.5.9", |
|
"changelog": { |
|
"0.5.9": "use monai 1.2.0", |
|
"0.5.8": "update TRT memory requirement in readme", |
|
"0.5.7": "add dataset dir example", |
|
"0.5.6": "add the ONNX-TensorRT way of model conversion", |
|
"0.5.5": "update retrained validation results and training curve", |
|
"0.5.4": "add non-deterministic note", |
|
"0.5.3": "adapt to BundleWorkflow interface", |
|
"0.5.2": "black autofix format and add name tag", |
|
"0.5.1": "modify dataset key name", |
|
"0.5.0": "use detection inferer", |
|
"0.4.5": "fixed some small changes with formatting in readme", |
|
"0.4.4": "add data resource to readme", |
|
"0.4.3": "update val patch size to avoid warning in monai 1.0.1", |
|
"0.4.2": "update to use monai 1.0.1", |
|
"0.4.1": "fix license Copyright error", |
|
"0.4.0": "add support for raw images", |
|
"0.3.0": "update license files", |
|
"0.2.0": "unify naming", |
|
"0.1.1": "add reference for LIDC dataset", |
|
"0.1.0": "complete the model package" |
|
}, |
|
"monai_version": "1.2.0", |
|
"pytorch_version": "1.13.1", |
|
"numpy_version": "1.22.2", |
|
"optional_packages_version": { |
|
"nibabel": "4.0.1", |
|
"pytorch-ignite": "0.4.9", |
|
"torchvision": "0.14.1" |
|
}, |
|
"name": "Lung nodule CT detection", |
|
"task": "CT lung nodule detection", |
|
"description": "A pre-trained model for volumetric (3D) detection of the lung lesion from CT image on LUNA16 dataset", |
|
"authors": "MONAI team", |
|
"copyright": "Copyright (c) MONAI Consortium", |
|
"data_source": "https://luna16.grand-challenge.org/Home/", |
|
"data_type": "nibabel", |
|
"image_classes": "1 channel data, CT at 0.703125 x 0.703125 x 1.25 mm", |
|
"label_classes": "dict data, containing Nx6 box and Nx1 classification labels.", |
|
"pred_classes": "dict data, containing Nx6 box, Nx1 classification labels, Nx1 classification scores.", |
|
"eval_metrics": { |
|
"mAP_IoU_0.10_0.50_0.05_MaxDet_100": 0.852, |
|
"AP_IoU_0.10_MaxDet_100": 0.858, |
|
"mAR_IoU_0.10_0.50_0.05_MaxDet_100": 0.998, |
|
"AR_IoU_0.10_MaxDet_100": 1.0 |
|
}, |
|
"intended_use": "This is an example, not to be used for diagnostic purposes", |
|
"references": [ |
|
"Lin, Tsung-Yi, et al. 'Focal loss for dense object detection. ICCV 2017" |
|
], |
|
"network_data_format": { |
|
"inputs": { |
|
"image": { |
|
"type": "image", |
|
"format": "magnitude", |
|
"modality": "CT", |
|
"num_channels": 1, |
|
"spatial_shape": [ |
|
"16*n", |
|
"16*n", |
|
"8*n" |
|
], |
|
"dtype": "float16", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "image" |
|
} |
|
} |
|
}, |
|
"outputs": { |
|
"pred": { |
|
"type": "object", |
|
"format": "dict", |
|
"dtype": "float16", |
|
"num_channels": 1, |
|
"spatial_shape": [ |
|
"n", |
|
"n", |
|
"n" |
|
], |
|
"value_range": [ |
|
-10000, |
|
10000 |
|
] |
|
} |
|
} |
|
} |
|
} |
|
|