Edit model card

distilbert-base-uncased-finetuned-clinc

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0311
  • Accuracy: 0.94

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.9448451109337938e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4446 1.0 318 0.2399 0.6155
0.1981 2.0 636 0.1226 0.8468
0.1246 3.0 954 0.0827 0.8987
0.0927 4.0 1272 0.0634 0.9158
0.0751 5.0 1590 0.0528 0.9232
0.0646 6.0 1908 0.0458 0.9313
0.0579 7.0 2226 0.0419 0.9316
0.053 8.0 2544 0.0398 0.9355
0.0497 9.0 2862 0.0368 0.9355
0.0471 10.0 3180 0.0357 0.9384
0.0449 11.0 3498 0.0349 0.9361
0.0434 12.0 3816 0.0340 0.9377
0.042 13.0 4134 0.0332 0.9371
0.0409 14.0 4452 0.0324 0.9381
0.0401 15.0 4770 0.0323 0.9387
0.0392 16.0 5088 0.0318 0.9387
0.0389 17.0 5406 0.0315 0.9394
0.0383 18.0 5724 0.0313 0.94
0.038 19.0 6042 0.0311 0.94
0.0377 20.0 6360 0.0311 0.94

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1
Downloads last month
18
Safetensors
Model size
67.1M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for moraudiet/distilbert-base-uncased-finetuned-clinc

Finetuned
(6681)
this model