metadata
language:
- en
license: mit
model-index:
- name: MoMo-72B-lora-1.8.7-DPO
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.82
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.96
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.13
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 74.71
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.06
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.62
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
name: Open LLM Leaderboard
Introduction
MoMo-72B-lora-1.8.7-DPO is trained via Direct Preference Optimization(DPO) from MoMo-72B-LoRA-V1.4 as its base model, with several optimizations in hyperparameters.
MoMo-72B-LoRA-V1.4 is trained via Supervised Fine-Tuning (SFT) using LoRA, with the QWEN-72B model as its base-model.
Note that we did not exploit any form of weight merge.
For leaderboard submission, the trained weight is realigned for compatibility with llama.
MoMo-72B is trained using Moreh's MoAI platform, which simplifies the training of large-scale models, and AMD's MI250 GPU.
Details
Used Librarys
- torch
- peft
Used Datasets
- slimorca
- truthy
- orca_dpo_pairs
- No other dataset was used
- No benchmark test set or the training set are used
- data contamination check result
Model | ARC | MMLU | TruthfulQA | GSM8K |
---|---|---|---|---|
V1.8.7(result < 0.1, %) | TBU | TBU | 0.44 | 0.47 |
Used Environments
- AMD MI250 & MoAI platform
- Please visit https://moreh.io/product for more information about MoAI platform
- Or, contact us directly [email protected]
How to use
# pip install transformers==4.35.2
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("moreh/MoMo-72B-lora-1.8.7-DPO")
model = AutoModelForCausalLM.from_pretrained(
"moreh/MoMo-72B-lora-1.8.7-DPO"
)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 78.55 |
AI2 Reasoning Challenge (25-Shot) | 70.82 |
HellaSwag (10-Shot) | 85.96 |
MMLU (5-Shot) | 77.13 |
TruthfulQA (0-shot) | 74.71 |
Winogrande (5-shot) | 84.06 |
GSM8k (5-shot) | 78.62 |