metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: Ruukki Group calculates that it has lost EUR 4mn in the failed project .
- text: >-
The Tecnomen Convergent Charging solution includes functionality for
prepaid and post-paid billing , charging and rating of voice calls , video
calls , raw data traffic and any type of content services in both mobile
and fixed networks .
- text: The combined value of the planned investments is about EUR 30mn .
- text: >-
The Diameter Protocol is developed according to the standards IETF RFC
3588 and IETF RFC 3539 .
- text: >-
Below are unaudited consolidated results for Aspocomp Group under IFRS
reporting standards .
pipeline_tag: text-classification
inference: true
base_model: BAAI/bge-small-en-v1.5
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9426048565121413
name: Accuracy
SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
positive |
|
neutral |
|
negative |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9426 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("moshew/bge-small-en-v1.5-SetFit-FSA")
# Run inference
preds = model("The combined value of the planned investments is about EUR 30mn .")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 22.4020 | 60 |
Label | Training Sample Count |
---|---|
negative | 266 |
neutral | 1142 |
positive | 403 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.2832 | - |
0.0221 | 50 | 0.209 | - |
0.0442 | 100 | 0.1899 | - |
0.0663 | 150 | 0.1399 | - |
0.0883 | 200 | 0.1274 | - |
0.1104 | 250 | 0.0586 | - |
0.1325 | 300 | 0.0756 | - |
0.1546 | 350 | 0.0777 | - |
0.1767 | 400 | 0.0684 | - |
0.1988 | 450 | 0.0311 | - |
0.2208 | 500 | 0.0102 | - |
0.2429 | 550 | 0.052 | - |
0.2650 | 600 | 0.0149 | - |
0.2871 | 650 | 0.1042 | - |
0.3092 | 700 | 0.061 | - |
0.3313 | 750 | 0.0083 | - |
0.3534 | 800 | 0.0036 | - |
0.3754 | 850 | 0.002 | - |
0.3975 | 900 | 0.0598 | - |
0.4196 | 950 | 0.0036 | - |
0.4417 | 1000 | 0.0027 | - |
0.4638 | 1050 | 0.0617 | - |
0.4859 | 1100 | 0.0015 | - |
0.5080 | 1150 | 0.0022 | - |
0.5300 | 1200 | 0.0016 | - |
0.5521 | 1250 | 0.0009 | - |
0.5742 | 1300 | 0.0013 | - |
0.5963 | 1350 | 0.0009 | - |
0.6184 | 1400 | 0.0015 | - |
0.6405 | 1450 | 0.0018 | - |
0.6625 | 1500 | 0.0015 | - |
0.6846 | 1550 | 0.0018 | - |
0.7067 | 1600 | 0.0016 | - |
0.7288 | 1650 | 0.0022 | - |
0.7509 | 1700 | 0.0013 | - |
0.7730 | 1750 | 0.0108 | - |
0.7951 | 1800 | 0.0016 | - |
0.8171 | 1850 | 0.0021 | - |
0.8392 | 1900 | 0.002 | - |
0.8613 | 1950 | 0.0015 | - |
0.8834 | 2000 | 0.0016 | - |
0.9055 | 2050 | 0.0028 | - |
0.9276 | 2100 | 0.0013 | - |
0.9496 | 2150 | 0.0019 | - |
0.9717 | 2200 | 0.0075 | - |
0.9938 | 2250 | 0.0015 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.5.1
- Transformers: 4.38.1
- PyTorch: 2.1.0+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}