segformer-b1-finetuned-segments-pv_v1_normalized_t4_4batch
This model is a fine-tuned version of nvidia/segformer-b1-finetuned-ade-512-512 on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0107
- Mean Iou: 0.8767
- Precision: 0.9236
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision |
---|---|---|---|---|---|
0.0061 | 0.9935 | 114 | 0.0077 | 0.7881 | 0.8686 |
0.0043 | 1.9956 | 229 | 0.0063 | 0.8084 | 0.8541 |
0.0051 | 2.9978 | 344 | 0.0052 | 0.8338 | 0.9445 |
0.0141 | 4.0 | 459 | 0.0054 | 0.8421 | 0.8811 |
0.0043 | 4.9935 | 573 | 0.0052 | 0.8414 | 0.9099 |
0.0027 | 5.9956 | 688 | 0.0057 | 0.8450 | 0.8967 |
0.0054 | 6.9978 | 803 | 0.0052 | 0.8505 | 0.9364 |
0.0024 | 8.0 | 918 | 0.0064 | 0.8408 | 0.9001 |
0.0024 | 8.9935 | 1032 | 0.0068 | 0.8378 | 0.9158 |
0.0033 | 9.9956 | 1147 | 0.0055 | 0.8643 | 0.9156 |
0.0014 | 10.9978 | 1262 | 0.0055 | 0.8611 | 0.9048 |
0.0019 | 12.0 | 1377 | 0.0070 | 0.8410 | 0.8900 |
0.0025 | 12.9935 | 1491 | 0.0060 | 0.8629 | 0.9112 |
0.0018 | 13.9956 | 1606 | 0.0063 | 0.8577 | 0.9294 |
0.002 | 14.9978 | 1721 | 0.0063 | 0.8539 | 0.8888 |
0.002 | 16.0 | 1836 | 0.0072 | 0.8598 | 0.9172 |
0.0021 | 16.9935 | 1950 | 0.0062 | 0.8555 | 0.9074 |
0.0018 | 17.9956 | 2065 | 0.0069 | 0.8598 | 0.9167 |
0.0018 | 18.9978 | 2180 | 0.0074 | 0.8556 | 0.9160 |
0.002 | 20.0 | 2295 | 0.0067 | 0.8662 | 0.9117 |
0.003 | 20.9935 | 2409 | 0.0062 | 0.8724 | 0.9245 |
0.0027 | 21.9956 | 2524 | 0.0067 | 0.8727 | 0.9124 |
0.0013 | 22.9978 | 2639 | 0.0068 | 0.8684 | 0.9147 |
0.0011 | 24.0 | 2754 | 0.0070 | 0.8723 | 0.9165 |
0.0014 | 24.9935 | 2868 | 0.0074 | 0.8709 | 0.9257 |
0.0011 | 25.9956 | 2983 | 0.0075 | 0.8697 | 0.9139 |
0.001 | 26.9978 | 3098 | 0.0071 | 0.8780 | 0.9273 |
0.0011 | 28.0 | 3213 | 0.0075 | 0.8743 | 0.9182 |
0.0008 | 28.9935 | 3327 | 0.0080 | 0.8744 | 0.9234 |
0.0007 | 29.9956 | 3442 | 0.0086 | 0.8692 | 0.9205 |
0.001 | 30.9978 | 3557 | 0.0083 | 0.8720 | 0.9145 |
0.0009 | 32.0 | 3672 | 0.0084 | 0.8745 | 0.9167 |
0.0009 | 32.9935 | 3786 | 0.0084 | 0.8717 | 0.9155 |
0.0011 | 33.9956 | 3901 | 0.0084 | 0.8756 | 0.9279 |
0.0007 | 34.9978 | 4016 | 0.0090 | 0.8777 | 0.9233 |
0.0008 | 36.0 | 4131 | 0.0090 | 0.8744 | 0.9173 |
0.0011 | 36.9935 | 4245 | 0.0097 | 0.8753 | 0.9192 |
0.0008 | 37.9956 | 4360 | 0.0091 | 0.8757 | 0.9260 |
0.0009 | 38.9978 | 4475 | 0.0091 | 0.8739 | 0.9173 |
0.0008 | 40.0 | 4590 | 0.0103 | 0.8760 | 0.9274 |
0.0008 | 40.9935 | 4704 | 0.0106 | 0.8749 | 0.9263 |
0.0008 | 41.9956 | 4819 | 0.0097 | 0.8753 | 0.9238 |
0.0009 | 42.9978 | 4934 | 0.0099 | 0.8730 | 0.9159 |
0.0006 | 44.0 | 5049 | 0.0101 | 0.8757 | 0.9247 |
0.0006 | 44.9935 | 5163 | 0.0104 | 0.8756 | 0.9217 |
0.0007 | 45.9956 | 5278 | 0.0106 | 0.8720 | 0.9175 |
0.0006 | 46.9978 | 5393 | 0.0107 | 0.8753 | 0.9202 |
0.0005 | 48.0 | 5508 | 0.0107 | 0.8757 | 0.9224 |
0.0007 | 48.9935 | 5622 | 0.0107 | 0.8764 | 0.9227 |
0.0008 | 49.6732 | 5700 | 0.0107 | 0.8767 | 0.9236 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 185
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for mouadenna/segformer-b1-finetuned-segments-pv_v1_normalized_t4_4batch
Base model
nvidia/segformer-b1-finetuned-ade-512-512