Asteroid model mpariente/DPRNNTasNet-ks2_WHAM_sepclean
Imported from Zenodo
Description:
This model was trained by Manuel Pariente
using the wham/DPRNN recipe in Asteroid.
It was trained on the sep_clean
task of the WHAM! dataset.
Training config:
data:
mode: min
nondefault_nsrc: None
sample_rate: 8000
segment: 2.0
task: sep_clean
train_dir: data/wav8k/min/tr
valid_dir: data/wav8k/min/cv
filterbank:
kernel_size: 2
n_filters: 64
stride: 1
main_args:
exp_dir: exp/train_dprnn_new/
gpus: -1
help: None
masknet:
bidirectional: True
bn_chan: 128
chunk_size: 250
dropout: 0
hid_size: 128
hop_size: 125
in_chan: 64
mask_act: sigmoid
n_repeats: 6
n_src: 2
out_chan: 64
optim:
lr: 0.001
optimizer: adam
weight_decay: 1e-05
positional arguments:
training:
batch_size: 3
early_stop: True
epochs: 200
gradient_clipping: 5
half_lr: True
num_workers: 8
Results:
si_sdr: 19.316743490695334
si_sdr_imp: 19.317895273889842
sdr: 19.68085347190952
sdr_imp: 19.5298092932871
sir: 30.362213998701232
sir_imp: 30.21116982007881
sar: 20.15553251343315
sar_imp: -129.02091762351188
stoi: 0.97772664309074
stoi_imp: 0.23968091518217424
License notice:
This work "DPRNNTasNet-ks2_WHAM_sepclean" is a derivative of CSR-I (WSJ0) Complete by LDC, used under LDC User Agreement for Non-Members (Research only). "DPRNNTasNet-ks2_WHAM_sepclean" is licensed under Attribution-ShareAlike 3.0 Unported by Manuel Pariente.
- Downloads last month
- 380
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.