Aura-llama-GGUF / README.md
mradermacher's picture
auto-patch README.md
7936012 verified
metadata
base_model: SteelStorage/Aura-llama
language:
  - en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
  - merge
  - mergekit
  - NousResearch/Meta-Llama-3-8B-Instruct

About

static quants of https://huggingface.co/SteelStorage/Aura-llama

weighted/imatrix quants are available at https://huggingface.co/mradermacher/Aura-llama-i1-GGUF

Usage

If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.

Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Link Type Size/GB Notes
GGUF Q2_K 4.2
GGUF Q3_K_S 4.9
GGUF Q3_K_M 5.4 lower quality
GGUF Q3_K_L 5.8
GGUF IQ4_XS 6.0
GGUF Q4_K_S 6.3 fast, recommended
GGUF Q4_K_M 6.6 fast, recommended
GGUF Q5_K_S 7.5
GGUF Q5_K_M 7.7
GGUF Q6_K 8.8 very good quality
GGUF Q8_0 11.4 fast, best quality
GGUF f16 21.4 16 bpw, overkill

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized.

Thanks

I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.