mradermacher's picture
auto-patch README.md
8aed77b verified
---
base_model: llmixer/BigWeave-v12-90b
language:
- en
library_name: transformers
license: llama2
quantized_by: mradermacher
tags:
- Xwin
- Euryale 1.3
- Platypus2
- WinterGoddess
- frankenmerge
- dare
- ties
- 90b
---
## About
static quants of https://huggingface.co/llmixer/BigWeave-v12-90b
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.Q2_K.gguf) | Q2_K | 32.7 | |
| [GGUF](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.IQ3_XS.gguf) | IQ3_XS | 36.2 | |
| [GGUF](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.Q3_K_S.gguf) | Q3_K_S | 38.2 | |
| [GGUF](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.IQ3_S.gguf) | IQ3_S | 38.4 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.IQ3_M.gguf) | IQ3_M | 39.6 | |
| [GGUF](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.Q3_K_M.gguf) | Q3_K_M | 42.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.Q3_K_L.gguf) | Q3_K_L | 46.4 | |
| [GGUF](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.IQ4_XS.gguf) | IQ4_XS | 47.7 | |
| [PART 1](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.Q4_K_S.gguf.part2of2) | Q4_K_S | 50.2 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.Q4_K_M.gguf.part2of2) | Q4_K_M | 53.0 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.Q5_K_S.gguf.part2of2) | Q5_K_S | 60.8 | |
| [PART 1](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.Q5_K_M.gguf.part2of2) | Q5_K_M | 62.4 | |
| [PART 1](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.Q6_K.gguf.part2of2) | Q6_K | 72.4 | very good quality |
| [PART 1](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/BigWeave-v12-90b-GGUF/resolve/main/BigWeave-v12-90b.Q8_0.gguf.part2of2) | Q8_0 | 93.6 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->