Einstein-v4-7B-GGUF / README.md
mradermacher's picture
auto-patch README.md
42d9c38 verified
---
base_model: Weyaxi/Einstein-v4-7B
datasets:
- allenai/ai2_arc
- camel-ai/physics
- camel-ai/chemistry
- camel-ai/biology
- camel-ai/math
- metaeval/reclor
- openbookqa
- mandyyyyii/scibench
- derek-thomas/ScienceQA
- TIGER-Lab/ScienceEval
- jondurbin/airoboros-3.2
- LDJnr/Capybara
- Cot-Alpaca-GPT4-From-OpenHermes-2.5
- STEM-AI-mtl/Electrical-engineering
- knowrohit07/saraswati-stem
- sablo/oasst2_curated
- glaiveai/glaive-code-assistant
- lmsys/lmsys-chat-1m
- TIGER-Lab/MathInstruct
- bigbio/med_qa
- meta-math/MetaMathQA-40K
- openbookqa
- piqa
- metaeval/reclor
- derek-thomas/ScienceQA
- scibench
- sciq
- Open-Orca/SlimOrca
- migtissera/Synthia-v1.3
- TIGER-Lab/ScienceEval
language:
- en
library_name: transformers
license: other
quantized_by: mradermacher
tags:
- axolotl
- generated_from_trainer
- Mistral
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- science
- physics
- chemistry
- biology
- math
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/Weyaxi/Einstein-v4-7B
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Einstein-v4-7B-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Einstein-v4-7B-GGUF/resolve/main/Einstein-v4-7B.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/Einstein-v4-7B-GGUF/resolve/main/Einstein-v4-7B.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Einstein-v4-7B-GGUF/resolve/main/Einstein-v4-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Einstein-v4-7B-GGUF/resolve/main/Einstein-v4-7B.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Einstein-v4-7B-GGUF/resolve/main/Einstein-v4-7B.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/Einstein-v4-7B-GGUF/resolve/main/Einstein-v4-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Einstein-v4-7B-GGUF/resolve/main/Einstein-v4-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Einstein-v4-7B-GGUF/resolve/main/Einstein-v4-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/Einstein-v4-7B-GGUF/resolve/main/Einstein-v4-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Einstein-v4-7B-GGUF/resolve/main/Einstein-v4-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Einstein-v4-7B-GGUF/resolve/main/Einstein-v4-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/Einstein-v4-7B-GGUF/resolve/main/Einstein-v4-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/Einstein-v4-7B-GGUF/resolve/main/Einstein-v4-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Einstein-v4-7B-GGUF/resolve/main/Einstein-v4-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Einstein-v4-7B-GGUF/resolve/main/Einstein-v4-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->