base_model: mudler/Mirai-Nova-Llama3-LocalAI-Unchained-8B-v0.2
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- llama-factory
About
weighted/imatrix quants of https://huggingface.co/mudler/Mirai-Nova-Llama3-LocalAI-Unchained-8B-v0.2
static quants are available at https://huggingface.co/mradermacher/Mirai-Nova-Llama3-LocalAI-Unchained-8B-v0.2-GGUF
Usage
If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.
Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
Link | Type | Size/GB | Notes |
---|---|---|---|
GGUF | i1-IQ2_M | 3.0 | |
GGUF | i1-Q2_K | 3.3 | IQ3_XXS probably better |
GGUF | i1-IQ3_XXS | 3.4 | lower quality |
GGUF | i1-Q3_K_M | 4.1 | IQ3_S probably better |
GGUF | i1-Q4_K_S | 4.8 | optimal size/speed/quality |
GGUF | i1-Q4_K_M | 5.0 | fast, recommended |
GGUF | i1-Q6_K | 6.7 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):
And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized.
Thanks
I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to @nicoboss for giving me access to his hardware for calculating the imatrix for these quants.