mradermacher's picture
auto-patch README.md
a5baed7 verified
|
raw
history blame
4.53 kB
metadata
exported_from: NeverSleep/Noromaid-v0.4-Mixtral-Instruct-8x7b-Zloss
language:
  - en
library_name: transformers
license: cc-by-nc-4.0
quantized_by: mradermacher

About

weighted/imatrix quants of https://huggingface.co/NeverSleep/Noromaid-v0.4-Mixtral-Instruct-8x7b-Zloss

static quants are available at https://huggingface.co/mradermacher/Noromaid-v0.4-Mixtral-Instruct-8x7b-Zloss-GGUF

Usage

If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.

Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Link Type Size/GB Notes
GGUF i1-IQ2_XXS 13.1
GGUF i1-IQ2_M 16.0
GGUF i1-Q2_K 17.8 IQ3_XXS probably better
GGUF i1-IQ3_XXS 18.8 lower quality
GGUF i1-IQ3_XS 19.8
GGUF i1-IQ3_S 20.9 beats Q3_K*
GGUF i1-Q3_K_S 20.9 IQ3_XS probably better
GGUF i1-IQ3_M 21.9
GGUF i1-Q3_K_M 23.1 IQ3_S probably better
GGUF i1-Q3_K_L 24.7 IQ3_M probably better
GGUF i1-IQ4_XS 25.6
GGUF i1-Q4_K_S 27.3 optimal size/speed/quality
GGUF i1-Q4_K_M 29.0 fast, recommended
GGUF i1-Q5_K_S 32.7
GGUF i1-Q5_K_M 33.7
GGUF i1-Q6_K 38.9 practically like static Q6_K

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

Thanks

I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.