mradermacher's picture
auto-patch README.md
a1abcd1 verified
|
raw
history blame
4.99 kB
metadata
base_model: cognitivecomputations/dolphin-2.9-llama3-70b
datasets:
  - cognitivecomputations/Dolphin-2.9
  - teknium/OpenHermes-2.5
  - m-a-p/CodeFeedback-Filtered-Instruction
  - cognitivecomputations/dolphin-coder
  - cognitivecomputations/samantha-data
  - HuggingFaceH4/ultrachat_200k
  - microsoft/orca-math-word-problems-200k
  - abacusai/SystemChat-1.1
  - Locutusque/function-calling-chatml
  - internlm/Agent-FLAN
language:
  - en
library_name: transformers
license: llama3
quantized_by: mradermacher

About

weighted/imatrix quants of https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-70b

static quants are available at https://huggingface.co/mradermacher/dolphin-2.9-llama3-70b-GGUF

Usage

If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.

Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Link Type Size/GB Notes
GGUF i1-IQ2_XXS 19.2
GGUF i1-IQ2_XS 21.2
GGUF i1-IQ2_M 24.2
GGUF i1-Q2_K 26.5 IQ3_XXS probably better
GGUF i1-IQ3_XXS 27.6 lower quality
GGUF i1-IQ3_XS 29.4
GGUF i1-IQ3_S 31.0 beats Q3_K*
GGUF i1-Q3_K_S 31.0 IQ3_XS probably better
GGUF i1-IQ3_M 32.0
GGUF i1-Q3_K_M 34.4 IQ3_S probably better
GGUF i1-Q3_K_L 37.2 IQ3_M probably better
GGUF i1-IQ4_XS 38.0
GGUF i1-Q4_0 40.2 fast, low quality
GGUF i1-Q4_K_S 40.4 optimal size/speed/quality
GGUF i1-Q4_K_M 42.6 fast, recommended
GGUF i1-Q5_K_S 48.8
GGUF i1-Q5_K_M 50.0
PART 1 PART 2 i1-Q6_K 58.0 practically like static Q6_K

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized.

Thanks

I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.