See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: NousResearch/Nous-Hermes-llama-2-7b
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- c1b617ce82c7310e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c1b617ce82c7310e_train_data.json
type:
field_instruction: prompt
field_output: chosen
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 20
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/24b7ffa1-83e7-48cf-b96e-84d19d9f7ba9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/c1b617ce82c7310e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 20
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 7f85a073-7b5c-430c-9a22-9fdc7c748e1c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7f85a073-7b5c-430c-9a22-9fdc7c748e1c
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
24b7ffa1-83e7-48cf-b96e-84d19d9f7ba9
This model is a fine-tuned version of NousResearch/Nous-Hermes-llama-2-7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0472
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 69
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0009 | 1 | 1.1513 |
No log | 0.0180 | 20 | 1.1314 |
No log | 0.0360 | 40 | 1.0877 |
No log | 0.0540 | 60 | 1.0745 |
No log | 0.0720 | 80 | 1.0684 |
1.0992 | 0.0900 | 100 | 1.0650 |
1.0992 | 0.1080 | 120 | 1.0614 |
1.0992 | 0.1260 | 140 | 1.0593 |
1.0992 | 0.1439 | 160 | 1.0582 |
1.0992 | 0.1619 | 180 | 1.0569 |
1.0811 | 0.1799 | 200 | 1.0547 |
1.0811 | 0.1979 | 220 | 1.0529 |
1.0811 | 0.2159 | 240 | 1.0531 |
1.0811 | 0.2339 | 260 | 1.0509 |
1.0811 | 0.2519 | 280 | 1.0513 |
1.0675 | 0.2699 | 300 | 1.0513 |
1.0675 | 0.2879 | 320 | 1.0504 |
1.0675 | 0.3059 | 340 | 1.0485 |
1.0675 | 0.3239 | 360 | 1.0485 |
1.0675 | 0.3419 | 380 | 1.0487 |
1.0808 | 0.3599 | 400 | 1.0465 |
1.0808 | 0.3779 | 420 | 1.0466 |
1.0808 | 0.3959 | 440 | 1.0472 |
1.0808 | 0.4139 | 460 | 1.0472 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 32
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/24b7ffa1-83e7-48cf-b96e-84d19d9f7ba9
Base model
NousResearch/Nous-Hermes-llama-2-7b