Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: NousResearch/Nous-Hermes-llama-2-7b
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - c1b617ce82c7310e_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/c1b617ce82c7310e_train_data.json
  type:
    field_instruction: prompt
    field_output: chosen
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 20
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/24b7ffa1-83e7-48cf-b96e-84d19d9f7ba9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/c1b617ce82c7310e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 20
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 7f85a073-7b5c-430c-9a22-9fdc7c748e1c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7f85a073-7b5c-430c-9a22-9fdc7c748e1c
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null

24b7ffa1-83e7-48cf-b96e-84d19d9f7ba9

This model is a fine-tuned version of NousResearch/Nous-Hermes-llama-2-7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0472

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 69
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
No log 0.0009 1 1.1513
No log 0.0180 20 1.1314
No log 0.0360 40 1.0877
No log 0.0540 60 1.0745
No log 0.0720 80 1.0684
1.0992 0.0900 100 1.0650
1.0992 0.1080 120 1.0614
1.0992 0.1260 140 1.0593
1.0992 0.1439 160 1.0582
1.0992 0.1619 180 1.0569
1.0811 0.1799 200 1.0547
1.0811 0.1979 220 1.0529
1.0811 0.2159 240 1.0531
1.0811 0.2339 260 1.0509
1.0811 0.2519 280 1.0513
1.0675 0.2699 300 1.0513
1.0675 0.2879 320 1.0504
1.0675 0.3059 340 1.0485
1.0675 0.3239 360 1.0485
1.0675 0.3419 380 1.0487
1.0808 0.3599 400 1.0465
1.0808 0.3779 420 1.0466
1.0808 0.3959 440 1.0472
1.0808 0.4139 460 1.0472

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
32
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mrferr3t/24b7ffa1-83e7-48cf-b96e-84d19d9f7ba9

Adapter
(324)
this model