Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: Korabbit/llama-2-ko-7b
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 4eef222b41cd0b2b_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/4eef222b41cd0b2b_train_data.json
  type:
    field_input: keyphrases
    field_instruction: abstract
    field_output: title
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/2a01c1b2-4428-4189-9e9c-6af0c0966c60
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/4eef222b41cd0b2b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 7c67e873-daff-4dd1-8fa6-8e6806bf2a16
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7c67e873-daff-4dd1-8fa6-8e6806bf2a16
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null

2a01c1b2-4428-4189-9e9c-6af0c0966c60

This model is a fine-tuned version of Korabbit/llama-2-ko-7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9390

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 70
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
No log 0.0044 1 2.1904
No log 0.1770 40 0.9849
No log 0.3540 80 0.9319
1.2654 0.5310 120 0.8959
1.2654 0.7080 160 0.9092
0.9422 0.8850 200 0.8798
0.9422 1.0619 240 0.8945
0.9422 1.2389 280 0.9464
0.7149 1.4159 320 0.9390

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
7
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mrferr3t/2a01c1b2-4428-4189-9e9c-6af0c0966c60

Adapter
(323)
this model