See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: unsloth/tinyllama
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 8bd0da3b508b00b8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/8bd0da3b508b00b8_train_data.json
type:
field_instruction: prompt
field_output: chosen
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 20
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/40a6e232-1d76-4065-867f-8d8c058ab9b5
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/8bd0da3b508b00b8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 20
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0fd25184-a976-4cc1-9dd6-b91fe10c3a8f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0fd25184-a976-4cc1-9dd6-b91fe10c3a8f
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
40a6e232-1d76-4065-867f-8d8c058ab9b5
This model is a fine-tuned version of unsloth/tinyllama on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1493
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 122
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0010 | 1 | 1.7236 |
No log | 0.0204 | 20 | 1.5940 |
No log | 0.0409 | 40 | 1.3535 |
No log | 0.0613 | 60 | 1.2795 |
No log | 0.0818 | 80 | 1.2480 |
1.3847 | 0.1022 | 100 | 1.2336 |
1.3847 | 0.1227 | 120 | 1.2239 |
1.3847 | 0.1431 | 140 | 1.2142 |
1.3847 | 0.1636 | 160 | 1.2047 |
1.3847 | 0.1840 | 180 | 1.1998 |
1.2025 | 0.2045 | 200 | 1.1945 |
1.2025 | 0.2249 | 220 | 1.1917 |
1.2025 | 0.2454 | 240 | 1.1872 |
1.2025 | 0.2658 | 260 | 1.1860 |
1.2025 | 0.2863 | 280 | 1.1830 |
1.1872 | 0.3067 | 300 | 1.1791 |
1.1872 | 0.3272 | 320 | 1.1772 |
1.1872 | 0.3476 | 340 | 1.1755 |
1.1872 | 0.3681 | 360 | 1.1734 |
1.1872 | 0.3885 | 380 | 1.1710 |
1.1716 | 0.4090 | 400 | 1.1689 |
1.1716 | 0.4294 | 420 | 1.1661 |
1.1716 | 0.4499 | 440 | 1.1688 |
1.1716 | 0.4703 | 460 | 1.1643 |
1.1716 | 0.4908 | 480 | 1.1628 |
1.1504 | 0.5112 | 500 | 1.1618 |
1.1504 | 0.5317 | 520 | 1.1615 |
1.1504 | 0.5521 | 540 | 1.1595 |
1.1504 | 0.5726 | 560 | 1.1584 |
1.1504 | 0.5930 | 580 | 1.1580 |
1.1607 | 0.6135 | 600 | 1.1584 |
1.1607 | 0.6339 | 620 | 1.1562 |
1.1607 | 0.6544 | 640 | 1.1560 |
1.1607 | 0.6748 | 660 | 1.1542 |
1.1607 | 0.6953 | 680 | 1.1540 |
1.1576 | 0.7157 | 700 | 1.1540 |
1.1576 | 0.7362 | 720 | 1.1538 |
1.1576 | 0.7566 | 740 | 1.1515 |
1.1576 | 0.7771 | 760 | 1.1518 |
1.1576 | 0.7975 | 780 | 1.1492 |
1.1404 | 0.8180 | 800 | 1.1495 |
1.1404 | 0.8384 | 820 | 1.1488 |
1.1404 | 0.8589 | 840 | 1.1473 |
1.1404 | 0.8793 | 860 | 1.1463 |
1.1404 | 0.8998 | 880 | 1.1456 |
1.1427 | 0.9202 | 900 | 1.1454 |
1.1427 | 0.9407 | 920 | 1.1452 |
1.1427 | 0.9611 | 940 | 1.1436 |
1.1427 | 0.9816 | 960 | 1.1440 |
1.1427 | 1.0020 | 980 | 1.1433 |
1.117 | 1.0225 | 1000 | 1.1475 |
1.117 | 1.0429 | 1020 | 1.1482 |
1.117 | 1.0634 | 1040 | 1.1493 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/40a6e232-1d76-4065-867f-8d8c058ab9b5
Base model
unsloth/tinyllama