Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: unsloth/tinyllama
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 8bd0da3b508b00b8_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/8bd0da3b508b00b8_train_data.json
  type:
    field_instruction: prompt
    field_output: chosen
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 20
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/40a6e232-1d76-4065-867f-8d8c058ab9b5
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/8bd0da3b508b00b8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 20
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0fd25184-a976-4cc1-9dd6-b91fe10c3a8f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0fd25184-a976-4cc1-9dd6-b91fe10c3a8f
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null

40a6e232-1d76-4065-867f-8d8c058ab9b5

This model is a fine-tuned version of unsloth/tinyllama on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1493

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 122
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
No log 0.0010 1 1.7236
No log 0.0204 20 1.5940
No log 0.0409 40 1.3535
No log 0.0613 60 1.2795
No log 0.0818 80 1.2480
1.3847 0.1022 100 1.2336
1.3847 0.1227 120 1.2239
1.3847 0.1431 140 1.2142
1.3847 0.1636 160 1.2047
1.3847 0.1840 180 1.1998
1.2025 0.2045 200 1.1945
1.2025 0.2249 220 1.1917
1.2025 0.2454 240 1.1872
1.2025 0.2658 260 1.1860
1.2025 0.2863 280 1.1830
1.1872 0.3067 300 1.1791
1.1872 0.3272 320 1.1772
1.1872 0.3476 340 1.1755
1.1872 0.3681 360 1.1734
1.1872 0.3885 380 1.1710
1.1716 0.4090 400 1.1689
1.1716 0.4294 420 1.1661
1.1716 0.4499 440 1.1688
1.1716 0.4703 460 1.1643
1.1716 0.4908 480 1.1628
1.1504 0.5112 500 1.1618
1.1504 0.5317 520 1.1615
1.1504 0.5521 540 1.1595
1.1504 0.5726 560 1.1584
1.1504 0.5930 580 1.1580
1.1607 0.6135 600 1.1584
1.1607 0.6339 620 1.1562
1.1607 0.6544 640 1.1560
1.1607 0.6748 660 1.1542
1.1607 0.6953 680 1.1540
1.1576 0.7157 700 1.1540
1.1576 0.7362 720 1.1538
1.1576 0.7566 740 1.1515
1.1576 0.7771 760 1.1518
1.1576 0.7975 780 1.1492
1.1404 0.8180 800 1.1495
1.1404 0.8384 820 1.1488
1.1404 0.8589 840 1.1473
1.1404 0.8793 860 1.1463
1.1404 0.8998 880 1.1456
1.1427 0.9202 900 1.1454
1.1427 0.9407 920 1.1452
1.1427 0.9611 940 1.1436
1.1427 0.9816 960 1.1440
1.1427 1.0020 980 1.1433
1.117 1.0225 1000 1.1475
1.117 1.0429 1020 1.1482
1.117 1.0634 1040 1.1493

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mrferr3t/40a6e232-1d76-4065-867f-8d8c058ab9b5

Base model

unsloth/tinyllama
Adapter
(341)
this model