Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: unsloth/SmolLM2-360M
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 283c4184083d47ae_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/283c4184083d47ae_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/9f105939-2de8-4946-b320-206ff7796263
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/283c4184083d47ae_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: a0ab5165-7ac1-4405-b1f9-20e99af02244
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a0ab5165-7ac1-4405-b1f9-20e99af02244
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null

9f105939-2de8-4946-b320-206ff7796263

This model is a fine-tuned version of unsloth/SmolLM2-360M on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0826

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 949
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
No log 0.0013 1 1.6294
No log 0.0526 40 1.6257
No log 0.1053 80 1.5691
1.6207 0.1579 120 1.4022
1.6207 0.2105 160 1.3050
1.3431 0.2632 200 1.2492
1.3431 0.3158 240 1.2136
1.3431 0.3684 280 1.1941
1.2206 0.4211 320 1.1788
1.2206 0.4737 360 1.1667
1.1697 0.5263 400 1.1570
1.1697 0.5789 440 1.1514
1.1697 0.6316 480 1.1420
1.1405 0.6842 520 1.1379
1.1405 0.7368 560 1.1335
1.1177 0.7895 600 1.1281
1.1177 0.8421 640 1.1220
1.1177 0.8947 680 1.1179
1.1093 0.9474 720 1.1169
1.1093 1.0 760 1.1153
1.0961 1.0526 800 1.1116
1.0961 1.1053 840 1.1128
1.0961 1.1579 880 1.1117
1.0744 1.2105 920 1.1072
1.0744 1.2632 960 1.1064
1.0758 1.3158 1000 1.1033
1.0758 1.3684 1040 1.0984
1.0758 1.4211 1080 1.0990
1.0859 1.4737 1120 1.0951
1.0859 1.5263 1160 1.0921
1.0684 1.5789 1200 1.0927
1.0684 1.6316 1240 1.0883
1.0684 1.6842 1280 1.0849
1.0656 1.7368 1320 1.0838
1.0656 1.7895 1360 1.0833
1.0588 1.8421 1400 1.0800
1.0588 1.8947 1440 1.0806
1.0588 1.9474 1480 1.0766
1.0531 2.0 1520 1.0775
1.0531 2.0526 1560 1.0789
1.0087 2.1053 1600 1.0826

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mrferr3t/9f105939-2de8-4946-b320-206ff7796263

Adapter
(247)
this model