See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: unsloth/SmolLM2-360M
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 283c4184083d47ae_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/283c4184083d47ae_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/9f105939-2de8-4946-b320-206ff7796263
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/283c4184083d47ae_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: a0ab5165-7ac1-4405-b1f9-20e99af02244
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a0ab5165-7ac1-4405-b1f9-20e99af02244
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
9f105939-2de8-4946-b320-206ff7796263
This model is a fine-tuned version of unsloth/SmolLM2-360M on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0826
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 949
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0013 | 1 | 1.6294 |
No log | 0.0526 | 40 | 1.6257 |
No log | 0.1053 | 80 | 1.5691 |
1.6207 | 0.1579 | 120 | 1.4022 |
1.6207 | 0.2105 | 160 | 1.3050 |
1.3431 | 0.2632 | 200 | 1.2492 |
1.3431 | 0.3158 | 240 | 1.2136 |
1.3431 | 0.3684 | 280 | 1.1941 |
1.2206 | 0.4211 | 320 | 1.1788 |
1.2206 | 0.4737 | 360 | 1.1667 |
1.1697 | 0.5263 | 400 | 1.1570 |
1.1697 | 0.5789 | 440 | 1.1514 |
1.1697 | 0.6316 | 480 | 1.1420 |
1.1405 | 0.6842 | 520 | 1.1379 |
1.1405 | 0.7368 | 560 | 1.1335 |
1.1177 | 0.7895 | 600 | 1.1281 |
1.1177 | 0.8421 | 640 | 1.1220 |
1.1177 | 0.8947 | 680 | 1.1179 |
1.1093 | 0.9474 | 720 | 1.1169 |
1.1093 | 1.0 | 760 | 1.1153 |
1.0961 | 1.0526 | 800 | 1.1116 |
1.0961 | 1.1053 | 840 | 1.1128 |
1.0961 | 1.1579 | 880 | 1.1117 |
1.0744 | 1.2105 | 920 | 1.1072 |
1.0744 | 1.2632 | 960 | 1.1064 |
1.0758 | 1.3158 | 1000 | 1.1033 |
1.0758 | 1.3684 | 1040 | 1.0984 |
1.0758 | 1.4211 | 1080 | 1.0990 |
1.0859 | 1.4737 | 1120 | 1.0951 |
1.0859 | 1.5263 | 1160 | 1.0921 |
1.0684 | 1.5789 | 1200 | 1.0927 |
1.0684 | 1.6316 | 1240 | 1.0883 |
1.0684 | 1.6842 | 1280 | 1.0849 |
1.0656 | 1.7368 | 1320 | 1.0838 |
1.0656 | 1.7895 | 1360 | 1.0833 |
1.0588 | 1.8421 | 1400 | 1.0800 |
1.0588 | 1.8947 | 1440 | 1.0806 |
1.0588 | 1.9474 | 1480 | 1.0766 |
1.0531 | 2.0 | 1520 | 1.0775 |
1.0531 | 2.0526 | 1560 | 1.0789 |
1.0087 | 2.1053 | 1600 | 1.0826 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.