See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: false
base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- b476e768184c0288_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b476e768184c0288_train_data.json
type:
field_instruction: src_text
field_output: tgt_text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 1.0e-05
eval_max_new_tokens: 128
eval_steps: 141
eval_strategy: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/b5632a9f-bcb9-4dac-acb1-5049251e1877
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 141
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps:
micro_batch_size: 4
mlflow_experiment_name: /tmp/b476e768184c0288_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 141
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode:
wandb_name: 37128511-879e-4070-8fa6-483ed98c0cae
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 37128511-879e-4070-8fa6-483ed98c0cae
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
b5632a9f-bcb9-4dac-acb1-5049251e1877
This model is a fine-tuned version of migtissera/Tess-v2.5-Phi-3-medium-128k-14B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6279
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0025 | 1 | 4.1070 |
5.5222 | 0.3579 | 141 | 1.9694 |
3.8869 | 0.7157 | 282 | 1.7862 |
3.9941 | 1.0736 | 423 | 1.7213 |
3.0632 | 1.4315 | 564 | 1.6551 |
3.1662 | 1.7893 | 705 | 1.6314 |
2.6543 | 2.1472 | 846 | 1.6497 |
2.0306 | 2.5051 | 987 | 1.6255 |
2.2417 | 2.8629 | 1128 | 1.5397 |
1.7098 | 3.2208 | 1269 | 1.6804 |
1.4168 | 3.5787 | 1410 | 1.7165 |
1.489 | 3.9365 | 1551 | 1.6279 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/b5632a9f-bcb9-4dac-acb1-5049251e1877
Base model
microsoft/Phi-3-medium-128k-instruct