See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 6588e3dccd54f9a1_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6588e3dccd54f9a1_train_data.json
type:
field_input: text
field_instruction: prompt
field_output: completion
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.0001
eval_max_new_tokens: 128
eval_steps: 80
eval_strategy: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/c19cd208-4359-4692-a0f4-50bac6a6f881
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 80
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps:
micro_batch_size: 32
mlflow_experiment_name: /tmp/6588e3dccd54f9a1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint:
s2_attention: null
sample_packing: false
save_steps: 80
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode:
wandb_name: 46a4a112-eb3e-4209-864d-e697f32e697e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 46a4a112-eb3e-4209-864d-e697f32e697e
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
c19cd208-4359-4692-a0f4-50bac6a6f881
This model is a fine-tuned version of migtissera/Tess-v2.5-Phi-3-medium-128k-14B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4056
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0008 | 1 | 1.0582 |
1.391 | 0.0654 | 80 | 0.4968 |
0.9365 | 0.1309 | 160 | 0.4548 |
0.8891 | 0.1963 | 240 | 0.4451 |
0.8578 | 0.2618 | 320 | 0.4365 |
0.8491 | 0.3272 | 400 | 0.4250 |
0.8306 | 0.3926 | 480 | 0.4243 |
0.8172 | 0.4581 | 560 | 0.4164 |
0.815 | 0.5235 | 640 | 0.4102 |
0.7949 | 0.5890 | 720 | 0.4095 |
0.7857 | 0.6544 | 800 | 0.4036 |
0.8036 | 0.7198 | 880 | 0.4050 |
0.7713 | 0.7853 | 960 | 0.3984 |
0.7684 | 0.8507 | 1040 | 0.3995 |
0.7746 | 0.9162 | 1120 | 0.3939 |
0.7654 | 0.9816 | 1200 | 0.3918 |
0.6469 | 1.0470 | 1280 | 0.4066 |
0.6177 | 1.1125 | 1360 | 0.4067 |
0.6122 | 1.1779 | 1440 | 0.4056 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/c19cd208-4359-4692-a0f4-50bac6a6f881
Base model
microsoft/Phi-3-medium-128k-instruct